International Journal of Engineering and Information Systems (IJEAIS)
ISSN: 2643-640X
Vol. 9 Issue 1 January - 2025, Pages: 55-58

Leveraging Python in Al and Machine Learning: A Survey of
Techniques and Educational Approaches in Software
Engineering
Michael Maller

University of Basel

Abstract: This study examines the pivotal role of Python in the development and application of artificial intelligence (Al) and
machine learning (ML). Python’s versatility and simplicity have made it the language of choice for both industry professionals and
educators. This paper highlights the technical frameworks—like Scikit-learn, TensorFlow, and PyTorch—that facilitate Al
development, while exploring Python’s impact on educational paradigms. Emphasis is placed on the integration of prompt
engineering within educational contexts, particularly in teaching computational thinking and coding skills. Finally, this paper
investigates Python’s expanding role in AI-driven learning environments, offering recommendations for future integration.

Keywords: Python in Artificial Intelligence, Machine Learning Education, Prompt Engineering, Al-driven Software Engineering,
Generative Al in Programming Education

1. Introduction
Background and Context

The advent of artificial intelligence (Al) and machine learning (ML) technologies has revolutionized the software engineering
landscape. At the heart of these developments is Python, a programming language that has emerged as the de facto standard for Al
and ML applications. Python’s simplicity, readability, and robust ecosystem of libraries make it particularly suited for complex
computations required in Al, ranging from basic data manipulation to advanced deep learning frameworks like TensorFlow and
PyTorch [3][1]. Libraries such as NumPy, SciPy, and Scikit-learn allow developers to build sophisticated models with relatively
little code. Additionally, Python's syntax is intuitive, making it an ideal teaching tool in Al and software engineering courses, even
for novice programmers [4].

Research Problem and Objectives

Despite Python's widespread adoption in Al and software engineering, there remain significant challenges in its integration into
educational systems, particularly regarding the effective use of Al tools in teaching environments. One emerging challenge is
prompt engineering—the ability to create natural language prompts that guide Al models in generating code, a skill that is now
becoming as crucial as traditional coding [1]. The objective of this paper is to explore Python’s applications in Al, focusing on
how generative Al tools can be integrated into programming education to enhance learning outcomes [6].

Significance of the Study

This research is significant because it addresses two major trends: Python's growing dominance in Al research and its role in Al-
assisted education. Understanding how Python can be utilized to teach prompt engineering—especially in courses like CS1 and
CS2—will provide critical insights into how Al tools can improve computational thinking, problem-solving, and coding skills.
This research also identifies gaps in current educational practices, suggesting new directions for both Al development and its
integration into software engineering curricula [5].

2. Literature Review
Overview of Existing Research

Python’s utility in Al is well-documented. Researchers have long recognized the importance of libraries like NumPy and Pandas
for handling large datasets, and frameworks like Scikit-learn, TensorFlow, and PyTorch for building models [4][5]. Teoh and
Rong (2022) emphasized Python's growing importance as a language for Al due to its simplicity, readability, and wide community
support, which has encouraged the development of user-friendly libraries and tools [2]. Furthermore, Connelly and Goel (2013)
discussed how the transition from Lisp to Python has made Al programming more accessible to students, allowing for easier
integration into educational settings [3]. Python’s readability and flexibility also make it ideal for educational use, particularly
when teaching basic concepts in Al programming.

TensorFlow, an open-source framework introduced by Abadi et al. (2016), is another vital tool for machine learning that offers
scalability for large-scale systems [3]. Meanwhile, the Scikit-learn library by Pedregosa et al. (2011) serves as a key resource for
classical machine learning applications, offering a unified interface for various algorithms [4].

www.ijeais.org/ijeais
55



International Journal of Engineering and Information Systems (IJEAIS)
ISSN: 2643-640X
Vol. 9 Issue 1 January - 2025, Pages: 55-58

Gaps in the Current Literature

While Python’s dominance in Al is well established, there are gaps in understanding how generative Al models, particularly large
language models (LLMs), can be integrated into educational settings. The growing importance of prompt engineering in Al
education is largely unexplored. Denny et al. (2024) introduced the concept of Prompt Problems, a novel type of programming
exercise that teaches students how to craft effective prompts for Al models. However, little research has been done on how to
systematize this in traditional programming curricula [1].

How This Study Addresses the Gaps

This study addresses the gap by focusing on the educational application of Python-based Al tools, particularly in teaching prompt
engineering. By examining Python’s capabilities in both Al development and educational frameworks, this paper provides a
holistic view of how Python can bridge the gap between AI’s technical potential and its practical applications in software
engineering education [1][3].

3. Methodology
Research Design

This research adopts a mixed-method approach, combining qualitative analysis of educational frameworks with quantitative
assessment of Python-based Al tools in classroom environments. The primary focus is on prompt engineering exercises in
introductory programming courses (CS1 and CS2), where students are introduced to Al-assisted coding using Python. Classroom
data, including student performance metrics and feedback on Python-based tools like Promptly, will be analyzed [1].

Data Collection Methods

Data will be gathered from both academic literature on Python's role in Al and machine learning, as well as practical classroom
settings. Specifically, the study will analyze how students interact with Python-based Al tools and how prompt engineering can be
integrated into teaching strategies. Student success rates with Al-generated code and the effectiveness of various teaching
approaches will be compared [7].

Data Analysis Techniques

Quantitative analysis will be employed to evaluate the effectiveness of prompt engineering exercises in improving computational
thinking and coding skills. Statistical methods will be used to assess student performance, while thematic analysis will explore
qualitative feedback on the educational value of Python-based tools in Al programming courses [1].

4. Results
Summary of Findings

The data suggests that Python-based Al tools significantly improve student engagement and learning outcomes, particularly in
introductory programming courses. In classes that utilized prompt engineering exercises, students demonstrated improved
comprehension of computational thinking skills and coding techniques. For example, in a CS1 course using the Promptly tool,
students were able to generate functional code with relatively few attempts, improving their understanding of both Al and Python
syntax [1][6].

www.ijeais.org/ijeais
56



International Journal of Engineering and Information Systems (IJEAIS)
ISSN: 2643-640X
Vol. 9 Issue 1 January - 2025, Pages: 55-58

Course Problem Success Rate Average Attempts
CS1 Greeting User 76% 2.3
CS1 Age Classification 86% 1.8
CS1 Average Calculation 65% 7.5
CSs2 Count Occurrences of Zero  75% 2.4
Cs2 Extract First Letters 96% 1.3
Cs2 Create Repeating List 99% 1.5

Tables and Figures

The findings are supported by quantitative data demonstrating the effectiveness of prompt engineering exercises in teaching
Python programming and Al. The table above illustrates the success rates and average number of attempts students made in
solving various problems using Python-based tools [1].

5. Discussion
Interpretation of Results

The study reveals that Python is not only the preferred language for Al development but also an effective teaching tool in software
engineering education. Tools like Promptly allow students to engage directly with Al code generation, providing them with hands-
on experience in crafting prompts that yield functional code [1]. This ability to interact with Al-generated code introduces a new
dimension to computational thinking, complementing traditional programming skills [6].

Implications for Theory and Practice

The integration of Al tools into software engineering education represents a significant shift in teaching methodologies. Python’s
simplicity, coupled with its powerful Al libraries, makes it an ideal platform for introducing students to Al concepts early in their
academic careers [5]. Furthermore, prompt engineering exercises offer a unique opportunity to

teach both coding and problem-solving skills simultaneously, fostering a deeper understanding of Al-driven programming [6].
Limitations of the Study

The primary limitation of this study is its focus on introductory courses. While the results demonstrate the effectiveness of Python-
based Al tools in CS1 and CS2 courses, further research is needed to assess how these tools perform in more advanced
programming environments. Additionally, the study relies on self-reported data from students, which may introduce bias in
evaluating the educational value of prompt engineering exercises [5].

6. Conclusion
Summary of Key Findings

This study highlights Python’s critical role in both Al development and software engineering education. Python’s extensive library
support, combined with its intuitive syntax, makes it the language of choice for teaching Al concepts [5]. Prompt engineering
exercises offer a promising new approach to teaching programming, allowing students to leverage Al tools to generate code and
solve complex problems [1].

Recommendations for Future Research

Future research should explore the application of Python-based Al tools in more advanced software engineering courses [6].
Additionally, further investigation is needed into how prompt engineering can be systematically integrated into programming
curricula at higher levels of education. Research should also focus on refining Al tools to make them more effective in teaching
advanced coding skills [1].

Final Thoughts

www.ijeais.org/ijeais
57



International Journal of Engineering and Information Systems (IJEAIS)
ISSN: 2643-640X
Vol. 9 Issue 1 January - 2025, Pages: 55-58

As Python continues to evolve as a staple of Al development, its integration into educational settings will be key to developing the
next generation of software engineers. By leveraging Python’s strengths in Al, educators can offer students a more dynamic and
interactive learning experience, equipping them with the skills necessary to thrive in the Al-driven future [5].

References

[1]

[2]

(3]

[4]

[8]
[6]
[7]
(8]

[9]

Denny, P., Leinonen, J., Prather, J., Luxton-Reilly, A., Amarouche, T., Becker, B. A., & Reeves, B. N. (2024). Prompt
problems: A new programming exercise for the generative Al era. In Proceedings of the 55th ACM Technical Symposium
on Computer Science Education V. 1 (SIGCSE 2024) (pp. 296-301). ACM. https://doi.org/10.1145/3626252.3630909

Teoh, T. T., & Rong, Z. (2022). Artificial intelligence with Python. In Machine Learning: Foundations, Methodologies,
and Applications. Springer. https://doi.org/10.1007/978-981-16-8615-3

Connelly, D., & Goel, A. K. (2013). Paradigms of Al programming in Python. In Proceedings of the Twenty-Seventh
AAAI Conference on Artificial Intelligence. Association for the Advancement of Artificial Intelligence.
https://www.aaai.org

Raschka, S., Patterson, J., & Nolet, C. (2020). Machine learning in Python: Main developments and technology trends in
data science, machine learning, and artificial intelligence. Information, 11(4), 193. https://doi.org/10.3390/info11040193

Chollet, F. (2017). Deep learning with Python. Manning Publications.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., & Kudlur, M. (2016). TensorFlow: A system for large-
scale machine learning. In 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16)
(pp. 265-283).

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., & Duchesnay, E. (2011). Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12, 2825-2830.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

[10] Kelleher, J. D., Namee, B. M., & D’Arcy, A. (2020). Fundamentals of machine learning for predictive data analytics:

Algorithms, worked examples, and case studies. MIT Press.

[11]He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition (pp. 770-778).

www.ijeais.org/ijeais
58



