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ABSTRACT: The global rise in polyethylene terephthalate (PET) consumption necessitates sustainable recycling pathways. This
study investigates the environmental performance and solvent reusability in alkaline hydrolysis of PET using methanol and ethylene
glycol. PET flakes were depolymerized with sodium hydroxide under controlled conditions, followed by neutralization with sulfuric
acid. Fourier Transform Infrared (FTIR) spectroscopy characterized both solid and liquid fractions. Ethylene glycol retained
structural stability, enabling reuse with minimal purification, whereas methanol showed degradation peaks, indicating reduced
recyclability. The results demonstrate that solvent reusability directly enhances process sustainability, reduces waste, and supports

circular economy models.
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1. INTRODUCTION

Polyethylene terephthalate (PET) is among the most widely
used thermoplastic polymers, particularly in packaging,
textiles, and beverage containers. Global PET production
surpassed 80 million tonnes annually [1]. However, its
persistence and low biodegradability contribute to severe
environmental challenges [2].

Mechanical recycling of PET often leads to property
degradation due to hydrolytic instability [3]. In contrast,
chemical recycling—specifically alkaline hydrolysis—offers
a method to recover valuable monomers such as terephthalic
acid (TPA) and ethylene glycol (EG) [4].

Recent studies highlight the need to integrate sustainability
and solvent reusability into chemical recycling frameworks
[5,6]. Solvents like methanol and ethylene glycol act as DE
polymerization media but also influence energy consumption,
purity of recovered products, and potential for closed-loop
reuse [7,8].

The solvent recovery phase represents a crucial stage in life-
cycle environmental assessment (LCA) [9]. Degraded
solvents increase both the energy footprint and hazardous
waste load [10]. Conversely, reusable solvents align with
circular economy principles, lowering emissions and reducing
reliance on virgin materials [11-13]. This paper evaluates the
environmental sustainability and reusability of methanol and
ethylene glycol in PET alkaline hydrolysis, using
experimental data validated through FTIR analysis.

2. Materials and Methods
2.1 Materials

Post-consumer PET bottles were cleaned, dried, and cut into
flakes (6-8 mm x 3-5 mm). Analytical-grade sodium
hydroxide (NaOH), methanol (CHsOH), ethylene glycol
(C2H602), and sulfuric acid (H2SO.) were used [14].

Table 1. General properties of materials used in PET
hydrolysis.

Material Formula Boiling | Density | Solubility
Point (g/cm?d)

o)
PET (C1oHsO4)n | — 1.38 Insoluble
in water
Ethylene | C:HsO2 197 1.11 Miscible

glycol

Methanol | CHs:OH 64.7 0.79 Miscible

Sodium NaOH 1388 2.13 Soluble
hydroxide
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2.2 Experimental Setup

The experimental arrangement included a steel reactor,
electric heater, thermometer, conical flasks, and FTIR
spectrometer (Figure 1). PET flakes were reacted with NaOH
dissolved in each solvent separately at elevated temperatures
(90-250°C). After full melting, the mixture was cooled and
neutralized with 34% H.SOs, precipitating TPA.
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Figure 1. Experimental setup for alkaline hydrolysis of PET
using methanol and ethylene glycol.

2.3 Solvent Recovery

The liquid phase obtained after filtration was analyzed via
FTIR spectroscopy (4000-500 cm™). Solvent reusability was
evaluated by comparing functional group retention and
spectral similarity with pure reference solvents (Figure 2).
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Figure 2. FTIR analysis workflow for solvent
characterization.

3. Results and Discussion
3.1 FTIR Characterization of Solid Products

FTIR spectra of solid TPA products exhibited characteristic
peaks at 3100-3000 cm™ (C-H stretching), 1680-1690 cm™!
(C=0 stretching), and a broad O—H band (2500-3300 cm™),
confirming high-purity TPA formation.

FTIR spectrum of recovered TPA
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Figure 3. FTIR spectrum of terephthalic acid recovered from
PET hydrolysis.

These findings align with Pereira et al. [16] and Amundarain
et al. [17], confirming efficient depolymerization.

3.2 FTIR Characterization of Liquid Fractions
Ethylene glycol-derived liquids showed FTIR profiles almost
identical to the pure solvent, retaining major absorption bands
at 3200-3500 cm™! (O—H stretching) and 1080-1110 cm™ (C—
O stretching) [18]. Methanol-derived liquids, however,
displayed additional carbonyl peaks near 1720 cm™,
suggesting oxidative degradation or ester formation
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Figure 4. FTIR comparison of liquid products derived from
ethylene glycol and methanol.
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This demonstrates that ethylene glycol is chemically stable
and reusable, while methanol undergoes partial
decomposition [19,20].

3.3 Comparative Sustainability Analysis

A sustainability comparison of the two solvent systems is
presented in Table 2.

Table 2. Sustainability parameters of methanol and ethylene
glycol systems.

Parameter Ethylene | Methanol | Observation
Glycol

Solvent High Moderate | EG  retains

Stability structure

Boiling 197 64.7 Lower solvent

Point (°C) loss in EG

FTIR 95% ~70% EG shows

Similarity fewer

(%) impurities

Energy Moderate | High Methanol

Demand requires
reflux

Waste Low Moderate | EG more eco-

Generation efficient

The comparative evaluation indicates ethylene glycol offers
superior environmental performance due to its high boiling
point, recyclability, and reduced emissions [21-23].
3.4 Environmental Implications

Adopting ethylene glycol-based PET hydrolysis supports
multiple UN Sustainable Development Goals (SDG 12, SDG
13). Recovered EG can be reintroduced into subsequent
reaction cycles with minimal treatment, achieving near-
closed-loop operation (Figure 5) [24,25].

Figure 5. Proposed circular process flow for solvent
recovery and reuse in PET recycling.

Moreover, lifecycle studies show that solvent reuse can lower
process carbon emissions by 30-40% [26,27]. Methanol,
though effective as a depolymerization medium, demands
additional purification energy, increasing environmental
burden [28].

4. Conclusion

This study highlights the superior sustainability of ethylene
glycol over methanol in alkaline hydrolysis of PET. FTIR
analysis confirmed EG’s chemical stability and reusability,
reducing solvent waste and energy requirements. The work
reinforces the importance of solvent selection in achieving
sustainable polymer recycling. Future studies should focus on
scaling solvent recovery systems and quantifying life-cycle
impacts under industrial conditions.
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