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Abstract: This review explores the environmental and health impacts of per- and polyfluoroalkyl substances (PFAS), a group of
synthetic, persistent chemicals widely used in industrial and consumer products. The study examines PFAS sources, transport
mechanisms, physicochemical properties, exposure pathways, and associated health effects on humans, animals, and plants. PFAS
are highly resistant to degradation, bio-accumulative, and capable of long-range environmental transport. Human exposure occurs
mainly through contaminated water, food, air, and consumer products, contributing to adverse outcomes such as liver toxicity,
cancer, reproductive and developmental disorders. The review highlights regulatory frameworks, emerging remediation
technologies, and advances in PFAS source apportionment and biodegradation research. It emphasizes the need for stricter
regulations, improved analytical methods, and sustainable management strategies to mitigate PFAS contamination and protect
public and ecosystem health.

Key words - Per- and polyfluoroalkyl substances; sources; PFAS exposure pathways

1.0 Per- and polyfluoroalkyl substances (PFAS)

PFAS is a group of synthetic chemicals characterized by fluorine atoms bonded to carbon atoms that are persistent in the environment
and resistant to degradation (Berg et al.,2022).

PFAS contamination, a persistent, bioaccumulative, and toxic chemical, is a growing concern in Africa, particularly in Uganda (May
et al., 2013). The contamination is primarily caused by industrial development, inadequate waste management practices, and
firefighting foams used in airports and military installations. Uganda faces challenges in addressing PFAS exposure due to lack of
regulation, limited research, and reliance on untreated surface water (Griffin et al., 2023). The potential bioaccumulation of PFAS
in fish and wildlife could affect food safety, particularly in regions reliant on subsistence fishing (Okafor et al., 2023). Despite
limited regulation, increasing international pressure and awareness could lead to future policy developments. Uganda's water
treatment infrastructure and reliance on untreated surface water pose significant risks to human populations and ecosystems
(Nakiyende et al., 2023).

1.2 Some examples of Per- and poly-fluoroalkyl substances

PFAS, or per- and poly-fluoroalkyl substances are synthetic compounds that have been extensively utilized in a wide range of
consumer and industrial goods (Roth & Petriello, 2022). They are found in a variety of items, including cleaning supplies, water-
resistant textiles, nonstick cookware, and firefighting foams. PFAS can find its way into the environment through product use,
production procedures, and inappropriate disposal (Pinkard et al.,2023). PFAS can build up in the environment and are a persistent
material, they have been found in soil, water sources, and wildlife all across the world. Because of the potential harm they could do
to human health, PFAS are a cause for concern (Koban & Pfluger, 2023). A few PFAS have been linked to immune system
malfunction, developmental disorders, and other health concerns. Concerns about long-term contamination arise from the fact that
they are difficult to remove from water sources (Roth & Petriello, 2022).

1.3 Examples of the most common priory Perfluoroalkyl Substances and their chemical structures

It's important to note that specific rankings or prioritizations may vary depending on the context and region, here are some of the
commonly encountered Perfluoroalkyl Substances compounds. The following are some of the examples of Perfluoroalkyl Substances
and their chemical structures.
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Source; (Caban-Martinez et al.,2022; Cousins et al.,2020; Mahinroosta & Senevirathna, 2020)

2.0 Methodology

This review analyzes literature on the environmental and biological dynamics of per- and polyfluoroalkyl substances (PFAS) sources.
It focuses on sources, exposure routes, and health impacts of PFAS. Peer-reviewed articles, government reports, and authoritative
databases published between 2011 and 2025 were sourced from databases like PubMed, Scopus, and Web of Science, categorized
into environmental sources, human and ecological exposure pathways, and health outcomes. The review identifies patterns,
knowledge gaps, and emerging trends in the field.

3.0 Sources and Emission Pathways per- and polyfluoroalkyl substances

Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals that pose a significant environmental threat due to their
widespread presence and persistence (Sharp et al., 2021). They are used in various industrial processes, including surface coatings,
firefighting foams, and chemical production, which can lead to improper disposal, accidental releases, and wastewater discharges
(Burkhard & Votava, 2023). Consumer products, such as stain-resistant fabrics, food packaging, non-stick cookware, and waterproof
apparel, also use PFAS, which can be released into the environment through wastewater treatment systems and landfill leachate
(Zhang et al.,2023).

Aqueous Film-Forming foam (AFFF) is used for firefighting, but improper storage, handling, and disposal can result in PFAS release
into soil, groundwater, and surface water bodies. Atmospheric deposition contributes to the widespread distribution of PFAS in the
environment (Kurwadkar et al.,2022). Landfill and waste disposal can also leach PFAS into the surrounding environment, including
groundwater and surface water. PFAS present in domestic and industrial wastewater can pass through conventional wastewater
treatment processes, leading to their discharge into receiving water bodies (Stoiber et al., 2020). Additionally, PFAS can accumulate
in biosolids and be applied to agricultural land, potentially contaminating soil and groundwater (Ogbuewu & Nnaji, 2023).
Contaminated sites and spills can also serve as ongoing sources of PFAS, which can continue to leach into the environment over
time (Breitmeyer et al.,2023). Determining the sources and emission pathways of PFAS is crucial for developing effective mitigation
strategies, implementing appropriate regulations, and addressing the widespread environmental contamination caused by these
persistent chemicals (Okafor et al., 2023). Non-point sources increase pressure by raising PFAS levels in the environment, such as
runoffs, grease-proofing coatings, incinerating non-stick cooking ware, carpets, strain-resistant fabrics, and aviation hydraulic fluids.
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Waste water processing also releases PFAS and associated precursors due to hydrophobicity, leaving untreated short-chain PFAS in
effluents (Rafiei & Nejadhashemi, 2023).

3.1 Physical properties of per- and poly-fluoroalkyl substances

PFAS are a type of polymer with a unique structure consisting of a fluorinated carbon chain. These chains are highly resistant to
thermal, chemical, and biological degradation due to their strong carbon-fluorine bonds (Yadav et al.,2022). They are hydrophobic
and oleophobic, making them effective as surfactants, repellents, and water/oil-resistant coatings (Das & Ronen, 2022).

PFAS have high thermal stability, allowing them to withstand high temperatures without decomposing (DiStefano et al.,2022). They
are also chemically inert, resistant to hydrolysis, oxidation, and reduction, contributing to their persistence in the environment and
ability to bioaccumulate in living organisms (Aly et al.,2022). Their low surface tension allows them to spread and coat surfaces
effectively, making them useful in firefighting foams, stain-resistant coatings, and non-stick surfaces. PFAS, particularly long-chain
varieties, have a high degree of bioaccumulation in living organisms and are highly persistent in the environment due to their
chemical stability, low biodegradability, and resistance to metabolic breakdown (Hofer et al.,2021).

3.2 Chemical properties of per- and poly-fluoroalkyl substances

PFAS, or perfluoroalkyl carboxylic acids, are characterized by their strong and stable carbon-fluorine bonds due to the
electronegativity difference between carbon and fluorine atoms (Lu et al.,2020). These bonds are highly polar, contributing to their
unique properties. PFAS are considered strong acids due to the electron-withdrawing effect of the fluorinated carbon chain, which
can influence their behavior in the environment and interactions with biological systems (Kadri et al.,2017). PFAS are effective
surfactants, lowering surface tension and facilitating surface spreading and wetting.

Solubility and phase behavior of PFAS in water and organic solvents can vary significantly, with some being more water-soluble
and longer-chain PFAS being less soluble in water but more soluble in organic solvents (Qi et al.,2022). PFAS are generally
thermally stable and resistant to chemical reactions, but some can undergo thermal or chemical degradation under specific conditions,
potentially leading to the formation of other PFAS or breakdown products (Jin et al.,2023). The persistence of PFAS in the
environment and living organisms is a major concern regarding their potential long-term exposure and environmental impact.
Table 3.1 Summary of the physicochemical properties of per- and poly-fluoroalkyl substances

Name CAS Solubility  Melting Boiling Vapour Log Pow Log Koc
in water point point (°C)  pressure
(mg/L) (C) (pa)
PFOS, Perfluorooctane sulfonic acid 176-23-1 519-770 3.31x10*  5.5-7.03 5.57-3.3
PFOA, Perfluorooctanoic acid 335-67-1 3400 12.1 3.6 211
PFHXS, Perfluorohexane sulfonic acid  355-46-4 243.4 190 452 1.08x10% 2.2 3.36/2.14
PFHXA, Perfluorohexanoic acid 307-24-4 29.5 121 2.5(3.12-
PFHXA, Perfluorohexanoate, Sodium  2923-26-4 29.5 ~0 0.7(?'26)
PFPeS, Perfluoro;::lttane Sulfonic acid 2706-91-4
PFPeA, Perfluoropentanoic acid 2706-90-3 120 1.98
PFBS, Perfluorobutane sulfonate, 29420-90-3 4340 188 447 1.49x10°  0.26 2.25/1.07
potassium salt
PFBA, Perfluorobutanoic acid 375-22-4 447 1.43
8:2 FTOH, Fluorotelomer alcohol 678-39-7 0.2-0.3 1.64 5.58 4.13
6:2 FTOH, Fluorotelomer alcohol 647-42-7 19 22.1 454 2.43
4:2 FTOH, Fluorotelomer alcohol 2043-47-2 97 -44 113 1330 3.07/3.30 2.34/2.83
6:2 FTS, Fluorotelomer sulfonamide 27619-97-2 3.47-3.98
6:2 FTAC, Fluorotelomer acrylate 17527-29-6  0.38 44.3 5.2

(Fisheries and Oceans Canada, 2012, Sasaki et al., 2011, Nakajigo et al., 2024)

Abbreviations; CAS - Chemical Abstracts Service Registry Number, Pow - 1-octanol/water partition coefficient, Koc - organic

carbon partitioning coefficient.

3.3 Environmental fate of PFAS in the environment

PFAS, particularly long-chain varieties, are highly persistent in the environment due to their carbon-fluorine bonds, allowing them
to be transported long distances through various environmental media (Amin et al.,2023). This long-range transport potential allows
them to be detected in remote areas. PFAS' environmental distribution is influenced by their physicochemical properties, which can
be partitioned between different environmental compartments (Alesio et al.,2022). Bioaccumulation and biomagnification have
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a high potential for PFAS in living organisms, with higher concentrations observed in predators and top consumers in the food chain
(Karimi Douna & Yousefi, 2023). This can lead to significant PFAS exposure and potential health risks for wildlife and humans
who consume contaminated food sources.

PFAS are generally resistant to natural degradation processes, but some limited transformation can occur through mechanisms like
photolysis, microbial degradation, and chemical reactions (Lucas et al.,2023). Understanding the transformation and degradation of
PFAS is crucial for predicting their environmental fate and potential impacts. Multimedia contamination and exposure can lead to
multiple exposure pathways for humans and wildlife, making the assessment and management of PFAS risks more challenging
(Cousins et al.,2020).
3.4 Environmental transport of per- and poly-fluoroalkyl substances

Per- and polyfluoroalkyl substances (PFAS) are transported in various environmental compartments, including water, soil, sediment,
air, and biota, based on their physicochemical properties (Aly et al.,2022). Factors such as water solubility, sorption to organic
matter, and volatility influence the partitioning behavior of PFAS, determining their transport pathways and distribution (Lenka et
al.,2023). PFAS are highly mobile in water and can easily leach into groundwater, contaminating surface water bodies. Surface water
and groundwater transport are crucial for their widespread distribution. Atmospheric transport and deposition contribute to the global
distribution of PFAS, even in remote areas (Kewalramani et al.,2022).

PFAS can adsorb to soil and sediment particles, facilitating their movement from terrestrial to aquatic environments. Soil erosion
and sediment transport facilitate the movement of PFAS from terrestrial to aquatic environments (Groffen et al.,2023). PFAS in soil
and sediment can also be remobilized and transported through processes like resuspension, bioturbation, and groundwater-surface
water interactions. PFAS can bioaccumulate in living organisms and be transported through food webs and trophic levels and
migratory behavior of animals and aquatic organisms contribute to the transport of PFAS between different ecosystems (Berhanu et
al.,2023). Long-range transport of PFAS is possible due to their persistent and mobile nature, allowing them to be transported over
long distances, often across national and regional boundaries (Kurwadkar et al.,2022). This long-range transport potential has led to
the detection of PFAS in remote locations, far from their primary sources of release.

3.5 Processes influencing the Environmental transportation of PFAS
Adsorption is the binding of PFAS to solid surfaces, such as soil, sediment, or organic matter, influenced by the physicochemical
properties of the compound, the adsorbent material, and environmental factors like pH and ionic strength (Izquierdo et al.,2023).
Shorter-chain PFAS have lower adsorption, while longer-chain PFAS have a higher propensity to adsorb to solids (Costello & Lee,
2020). Adsorption limits the mobility of PFAS in the environment and influences their transport through water and soil systems
(Sleep et al.,2023).

Volatilization is the process by which PFAS transition from liquid or solid phase to gas phase, depending on their vapor pressure.
Factors affecting volatilization include temperature, wind, and the nature of the PFAS-containing matrix (Sima & Jaffé, 2021). The
volatilized PFAS can be transported through the atmosphere and potentially deposited elsewhere. Leaching is the process by which
PFAS are dissolved and transported through the soil or aquifer system, typically by water percolation (Bolan et al., 2021). Leaching
can lead to contamination of groundwater and surface water systems, facilitating the transport of PFAS in the environment
(Evangelou & Robinson, 2022).

Bio-transport refers to the movement of PFAS through the food web and biota, such as the migration of animals or uptake and
accumulation in living organisms (Ates et al.,2023). PFAS can bioaccumulate and bio-magnify in the food chain, leading to higher
concentrations in predators and top consumers, this transformation and degradation of PFAS are important for predicting their
environmental fate and potential impacts (Kleywegt et al.,2020).
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Figure 3.1: How humans are exposed to per- and poly-fluoroalkyl substances (Aradjo et al., 2022)

PFAS can contaminate surface water and groundwater sources used for drinking water, with ingestion being the most significant
exposure pathway for the general population. Food consumption exposure is another significant route, with PFAS bioaccumulating
and biomagnifying up the food chain, leading to higher levels in foods grown or raised in PFAS-contaminated areas (Gaber et al.,
2023). PFAS can also contaminate food packaging materials, transferring these substances into food. Inhalation exposure is another
significant exposure pathway, especially for individuals living near PFAS-contaminated sites or working in industries that use these
substances (Dauchy, 2023). Exposure levels can be higher in occupational settings, such as firefighting, where PFAS-containing
foams are used.

Dermal absorption exposure occurs through direct contact with PFAS-contaminated materials or products, particularly in
occupational settings like firefighting (Izquierdo et al., 2023). PFAS-containing consumer products, such as stain-resistant fabrics,
non-stick cookware, water-repellent clothing, and personal care products, can also lead to exposure through dermal contact,
inhalation, or inadvertent ingestion (McAdam & Bell, 2023). Dust ingestion exposure is another significant pathway, with PFAS
accumulating in household dust, especially in homes or workplaces where PFAS-containing products are used or where PFAS-
contaminated soil or water is present (Stecconi et al., 2024). Ingestion of PFAS-contaminated dust, particularly by young children,
can contribute to human exposure, especially for individuals living in PFAS-contaminated areas or those with high-dust
environments (Zhao et al., 2023).

3.6 Health effects of exposure to per- and poly-fluoroalkyl substances

3.6.1 Human exposure to PFAS

Prenatal exposure to polyphenols (PFAS) has been linked to various health issues, including reduced fetal growth, lower birth weight,
and smaller head circumference (Goin et al., 2022). It has also been associated with delayed puberty, altered sex hormone levels,
and reduced fertility in both men and women. PFAS exposure can increase liver enzymes, leading to liver damage and potentially
non-alcoholic fatty liver disease (Ilmiawati et al., 2023). It can also increase cholesterol and lipid metabolism, increasing the risk of
cardiovascular disease and related health problems. PFAS exposure has been linked to decreased vaccine antibody responses,
suggesting potential immunotoxicity (Post, 2021).

Some studies have found associations between PFAS exposure and increased risk of infectious diseases and autoimmune disorders.
PFAS can interfere with the endocrine system, leading to hormonal imbalances, altered thyroid hormone levels, and impacts on the
reproductive system (Merrill et al., 2022). Certain PFAS, particularly PFOA, have been associated with an increased risk of testicular
and kidney cancer, with PFOA being classified as possibly carcinogenic to humans by the International Agency for Research on
Cancer (IARC) (De Faria & Della Rosa, 2004). Other health effects include increased risk of high blood pressure, preeclampsia,
ulcerative colitis, and potential neurological and cognitive effects (Mahoney et al., 2022).

3.6.2 Aquatic organisms and animals’ exposure to PFAS

PFAS exposure poses significant threats to aquatic and terrestrial organisms, causing mortality, growth inhibition, and developmental
abnormalities in fish species. Certain PFAS, such as PFOS and PFOA, can bioaccumulate in fish, leading to higher concentrations
at higher trophic levels (Ehsan et al., 2023). Aquatic invertebrates, such as crustaceans and mollusks, also suffer from reduced
survival, growth, and reproduction. Amphibians, such as frogs and salamanders, experience impaired growth and development, while
PFAS can affect their immune system and behavioral changes (Brunn et al., 2023). Wildlife, including birds, mammals, and reptiles,
suffer from liver damage, reproductive issues, and immunotoxicity due to bioaccumulation and biomagnification (Hamid et al.,
2023). Domestic animals, including livestock and pets, also suffer from liver and kidney damage, thyroid disruption, and
reproductive issues. PFAS contamination can have broader ecological impacts, affecting food web dynamics, biodiversity, and
overall ecosystem health. Disruption of sensitive species and changes in community structure can lead to cascading effects
throughout the ecosystem (McGarr et al., 2023).

3.6.3 Plants' exposure to PFAS

PFAS, or poly-fluoroacetic acid, can be absorbed by plants from contaminated soil, water, or air, accumulating in various plant
tissues like roots, stems, leaves, and fruits (Thompson et al., 2023). The uptake and bioaccumulation of PFAS depend on factors like
the type, plant species, and environmental conditions. Exposure to PFAS can negatively impact plant growth and development,
leading to reduced seed germination, altered flowering and reproductive processes, and disruption of photosynthesis (Wang et al.,
2023). PFAS can also cause nutrient imbalance and oxidative stress, leading to increased susceptibility to pests and diseases. PFAS
can be directly toxic to plants, causing visible symptoms like leaf chlorosis, necrosis, and wilting at high concentrations (Ngweme
et al., 2021). PFAS-contaminated plants can transfer the compounds up the food chain, leading to bioaccumulation in higher trophic
levels, including animals and humans (Ogbuewu & Nnaji, 2023). This can have broader implications for the health and functioning
of terrestrial and aquatic ecosystems, as PFAS exposure may affect the growth and productivity of primary producers and disrupt
the entire food web (Nason et al., 2024).

3.7 Regulatory guidelines of per- and polyfluoroalkyl substances

The U.S. Environmental Protection Agency (EPA) has established health advisory levels for PFOA and PFOS in drinking water,
and has issued a PFAS Strategic Roadmap to address contamination (Ling et al., 2024). The European Union has taken a
comprehensive approach to PFAS regulation, focusing on restricting the use and production of certain PFAS under the REACH
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regulation (Garcia-Garin et al., 2023). The European Food Safety Authority (EFSA) has set tolerable weekly intake levels for PFOA
and PFOS to protect public health.

International conventions, such as the Stockholm Convention on Persistent Organic Pollutants, have listed PFOA, its salts, and
PFOA-related compounds as persistent organic pollutants (POPs) subject to global restrictions and phase-out (Sonne et al., 2023).
The OECD/UNEP Global PFC Group has developed guidance and recommendations for the safe management of PFAS.A growing
trend towards a class-based approach to PFAS regulation is emerging, with jurisdictions like the EU and some U.S. states considering
or implementing regulations that group PFAS based on structural similarities and environmental persistence (OECD/UNEP Global
PFC Group, 2015). This approach aims to address the wide variety of PFAS compounds and their potential cumulative risks.
Regulatory guidelines often include requirements for reliable analytical methods and monitoring programs to detect and quantify
PFAS in environmental media and human biomonitoring samples. Standardized analytical methods, such as those developed by the
EPA and other organizations, are essential for consistent and accurate PFAS measurements (Winchell et al., 2021).

3.8 Emerging trends and future directions of per- and polyfluoroalkyl substances

The global trend towards phasing out long-chain PFAS (polyfluoroacetic acids) due to their persistent and bio-accumulative nature
has led to the development and increased use of shorter-chain PFAS as alternatives (Lee et al., 2022). Governments and international
organizations are developing and implementing regulations to restrict the use of PFAS, aiming to limit environmental release and
human exposure (McDonough et al., 2021). Examples include the PFAS Action Plan in the United States and the REACH regulation
in the European Union (Parolini et al., 2022).

Expansion of PFAS monitoring and research is also being emphasized, with researchers developing more comprehensive analytical
methods to detect and quantify a wider range of PFAS compounds (B. F. da Silva et al., 2022). Advancements in PFAS remediation
and destruction technologies, such as adsorption, membrane filtration, advanced oxidation processes, and thermal destruction
methods, are being developed to mitigate environmental contamination and human exposure (Garg et al., 2023).

Evaluation of toxicity and potential health effects associated with exposure to PFAS is also being conducted, with a focus on
developing non-fluorinated or inherently degradable compounds (Rericha et al., 2023). Successful substitution of PFAS in various
applications is crucial for reducing environmental and human exposure in the long term. Efforts are underway to improve the
lifecycle management of PFAS-containing products, including responsible disposal, recycling, and waste treatment. The concept of
a circular economy, where PFAS are recovered and reused, is being explored to minimize the release of these substances into the
environment (Bulson et al., 2023).

3.9 Recent advancements in source apportionment and biodegradation research

Advanced analytical techniques, such as high-resolution mass spectrometry and targeted/non-targeted analysis, have enabled more
comprehensive identification and characterization of PFAS compounds in environmental samples (Silva et al., 2021). Researchers
are using fingerprinting and profiling to differentiate and apportion PFAS sources, such as industrial, municipal, or agricultural
inputs (Wang et al., 2023). Multivariate statistical analyses, principal component analysis, and receptor modeling are employed to
quantify the relative contributions of different PFAS sources in the environment. Isotopic analysis, using stable techniques like
carbon and fluorine isotopes, provides additional insights into the origins and transformation processes of PFAS (Barhoumi et al.,
2019).

Biotransformation pathways are being investigated, with studies identifying enzymes and microbial consortia that can initiate the
breakdown of PFAS (Jin et al., 2023). Co-metabolic processes are also being explored, with the presence of other carbon sources or
co-substrates enhancing microbial transformation. Transformation byproducts are also being investigated, which can be equally or
more persistent and toxic than the parent PFAS compounds (Bankole et al., 2022). Field-scale applications include pilot-scale
demonstrations of various remediation technologies, comprehensive monitoring and verification, and integrated approaches to
address PFAS contamination holistically and effectively (Vu & Wu, 2022).

Researchers have developed advanced methods for apportioning PFAS (Perfluoroalkyl Acids) in various environments. These
methods use multiple PFAS compounds as "tracers" to differentiate between different sources, such as industrial, firefighting, or
wastewater-related inputs (Charbonnet et al., 2021). Isotopic analysis, particularly carbon and fluorine isotopes, has emerged as a
powerful tool for source identification and apportionment (Ren et al., 2022). Studies have also focused on analyzing spatial and
temporal trends of PFAS in environmental media, such as water, soil, and sediment, to identify hotspots, track the evolution of PFAS
sources and transport over time, and differentiate between legacy and ongoing inputs (Rehman et al., 2023). Advanced receptor
modeling techniques, such as positive matrix factorization and chemical mass balance models, have been applied to quantify the
contributions of different source categories to the overall PFAS burden in a particular environment (Ren et al., 2023).

Researchers have made progress in elucidating the complex microbial biotransformation pathways for certain PFAS, particularly the
shorter-chain perfluoroalkyl acids. Engineered bioremediation approaches, such as the use of specialized microbial consortia or the
stimulation of indigenous microbial communities, have been explored to enhance the degradation of PFAS in contaminated
environments (Wasfi et al., 2023). Cometabolic degradation of PFAS is also being investigated, where the transformation of these
compounds is facilitated by the presence of other, more easily degradable substrates. Anaerobic processes, particularly for the
transformation of perfluoroalkyl carboxylates and sulfonates, have also been highlighted (I1zawa et al., 2021).

This review on PFAS compounds focuses on understanding their distribution, exposure pathways, and the risks they pose to
ecosystems and human health. Long-range atmospheric transport, deposition in remote areas, and combined effects of PFAS
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mixtures are critical for predicting contamination and assessing risks (Chen et al., 2023). Analytical techniques for detecting PFAS,
alongside large-scale epidemiological studies, are needed to better link exposure to health effects (Park et al., 2021). Developing
efficient, scalable, and cost-effective removal methods, particularly during wastewater and sludge treatment, is essential for
managing and mitigating PFAS pollution.

4.0 Discussion, conclusion, and recommendations

4.1 Discussion

Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals used in various industries due to their water- and oil-repellent
properties. Understanding their source apportionment is crucial for effective remediation strategies, as these compounds can persist
in the environment and pose significant health risks. Key sources of PFAS contamination include industrial discharges, wastewater
effluent, and firefighting foams. Studies using source tracking methods have identified distinct PFAS profiles associated with
different sources, enabling more targeted regulatory actions. PFAS's biodegradation pathways are complex due to their stable carbon-
fluorine bonds, making them resistant to conventional degradation processes. Recent research has identified potential biotic and
abiotic pathways for PFAS degradation, including microbial metabolism, photolysis, and hydrolysis. Enzymatic pathways,
particularly those involving fluorinated alkane-oxidizing bacteria, are under investigation for their potential to break down PFAS.
However, knowledge gaps persist, and further exploration is needed to assess the environmental fate of PFAS compounds and the
interaction between PFAS and other environmental contaminants. Future research should focus on elucidating PFAS biodegradation
mechanisms and integrating source apportionment data with biodegradation studies to develop comprehensive management
strategies for PFAS contamination.

4.2 Conclusion

The review highlights the complexity of PFAS source apportionment, revealing contributions from industrial applications, consumer
products, and environmental persistence. Effective management of PFAS contamination requires a comprehensive understanding of
these sources to inform regulatory measures and remediation strategies. Proposed biodegradation pathways offer insights into
potential bioremediation techniques. Advancements in microbial and enzymatic degradation research present viable avenues for
reducing PFAS concentrations. A concerted effort combining source identification, innovative biodegradation approaches, and
stakeholder collaboration is essential.

5.3 Recommendations

The plan involves enhancing source identification of PFAS contamination, establishing stricter regulations for production and use,
investing in research to understand PFAS biodegradation mechanisms, developing bioremediation strategies, increasing public
awareness about PFAS sources and risks, fostering interdisciplinary collaboration among researchers, policymakers, and industry
stakeholders, establishing long-term environmental monitoring programs to track PFAS levels, and promoting alternative substance
development to reduce reliance on persistent chemicals. The plan also includes investing in research to understand microbial strains
and enzymatic pathways, developing bioremediation technologies, increasing public engagement, fostering interdisciplinary
collaboration, and promoting long-term environmental monitoring programs to track PFAS levels.
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