

Advancing Sustainability of Solar Energy Devices through Life Cycle Engineering: A Comprehensive Review

Gabriel Ebiwei Moses, Walson Gift, David Echefulam Echendu

gabrielebiwei@ndu.edu.ng

Department of Electrical & Electronic Engineering, Niger Delta University, Nigeria.

ABSTRACT: This paper presents a comprehensive evaluation of Life Cycle Engineering (LCE) processes for enhancing the sustainability of solar electricity gadgets, addressing the crucial need for holistic environmental assessment in renewable energy technology. While sun power systems offer sizable environmental advantages at some point of operation, their manufacturing, installation, and quit-of-life phases gift extensive sustainability challenges that require systematic evaluation. This review synthesizes modern-day literature on LCE applications in photovoltaic and solar thermal structures, inspecting eco-layout principles, modularity strategies, additive production improvements, and round economy procedures. Key findings display that electricity payback instances for crystalline silicon PV systems have reduced to one-four years, at the same time as carbon footprints range from 20-50g CO₂-eq/kWh, considerably decrease than fossil fuel alternatives. However, essential know-how gaps persist in recycling technology, fabric healing economics, and standardized assessment methodologies. The paper identifies 4 primary studies opportunities: improvement of design-for-disassembly protocols, advancement of selective fabric recovery strategies, integration of digital twin technologies for lifecycle optimization, and established order of circular business models. These findings offer a roadmap for researchers and practitioners attempting to find to decorate the sustainability of solar power structures thru complete lifecycle processes, in the end supporting the transition to a spherical economic system in renewable strength sectors.

Keywords: Life Cycle Engineering, Solar Power, Photovoltaic Structures, Sustainability, Circular Economy, Eco-Layout, Energy Payback Time, Carbon Footprint

INTRODUCTION

The global transition toward renewable strength systems has placed solar power as a cornerstone of sustainable improvement, but the environmental implications of solar generation production, deployment, and disposal continue to be inadequately addressed thru conventional evaluation strategies. Life Cycle Engineering (LCE) emerges as a crucial framework for comparing and optimizing the environmental overall performance of solar strength gadgets across their whole existence, from raw fabric extraction through quit-of-lifestyles management (Fthenakis & Kim, 2020). This systematic approach extends beyond operational efficiency to encompass the embedded environmental costs that traditional analyses often overlook.

The urgency of implementing LCE concepts in sun electricity systems stems from the exponential increase in global sun capacity, which reached 1,177 GW with the aid of 2022 and keeps increasing at extraordinary quotes (International Renewable Energy Agency [IRENA], 2023). This speedy deployment generates massive cloth flows, with the International Energy Agency projecting that cumulative stop-of-life sun panel waste will reach 78 million metric tons through 2050 (Chowdhury et al., 2020). Without comprehensive lifecycle management strategies, the solar enterprise dangers undermining its environmental advantages thru unsustainable useful resource intake and waste generation patterns.

Contemporary sun strength gadgets, in particular photovoltaic systems, contain complicated fabric compositions along with silicon, silver, aluminum, copper, and numerous uncommon earth elements, each sporting distinct environmental burdens during their lifecycles (Latunussa et al., 2016). The extraction and processing of these substances make a contribution significantly to the general environmental footprint of solar technologies, accounting for approximately forty-50% of general lifecycle emissions in crystalline silicon systems (Müller et al., 2021). Furthermore, the geographic concentration of sun production in regions depending on coal-based totally electricity amplifies those influences, growing a paradox in which clean power technologies rely upon carbon-extensive production methods.

RESEARCH FOCUS AND THEORETICAL FRAMEWORK

The application of LCE to solar power systems calls for integration of a couple of analytical frameworks and methodological procedures that together cope with the complexity of sustainability evaluation. Life Cycle Assessment (LCA) affords the foundational methodology for quantifying environmental influences throughout described gadget barriers, enabling comparative analyses between distinct solar technology and traditional energy resources (Hercceg et al., 2022). This quantitative basis supports selection-making processes all through the layout, production, and deployment stages at the same time as figuring out crucial improvement possibilities.

Eco-design concepts constitute a proactive approach within the LCE framework, emphasizing the combination of environmental considerations for the duration of the conceptual and unique design phases of solar gadgets. Recent advances in eco-design for solar packages awareness on material substitution techniques, specially the discount of silver content material in photovoltaic cells and

the development of lead-free perovskite substances (Zhang et al., 2021). These design interventions show how early-level selections can drastically impact lifecycle environmental performance, with research indicating capability emission reductions of 15-30% via optimized cloth selection by myself (Tsanakas et al., 2020).

Modularity emerges as a important design approach that enhances both the operational flexibility and end-of-life management of solar structures. Modular architectures facilitate thing substitute, machine upgrades, and selective recycling, thereby extending product lifespans and enhancing cloth recovery rates (Corcelli et al., 2018). The implementation of modular layout principles in focused solar energy systems has validated specific promise, permitting thermal garage additives to be independently optimized and changed without whole system overhaul (Kumar et al., 2023).

The integration of additive production technologies represents a paradigmatic shift in sun device manufacturing, presenting unparalleled opportunities for fabric performance and design optimization. Three-dimensional printing techniques enable the fabrication of complex geometries that maximize mild absorption whilst minimizing cloth utilization, with current demonstrations accomplishing 20% discounts in cloth intake for equivalent overall performance metrics (Pescetelli et al., 2022). Moreover, additive manufacturing helps dispensed production fashions that lessen transportation-related emissions and allow localized customization of sun solutions.

CRITICAL ANALYSIS OF CURRENT LITERATURE

The significant body of literature addressing lifecycle affects of sun electricity systems well-known shows each huge achievements and continual demanding situations in sustainability evaluation methodologies. Energy payback time (EPBT), a essential metric for evaluating the internet strength advantage of sun technologies, has witnessed dramatic improvements during the last decade. Contemporary crystalline silicon photovoltaic structures gain EPBTs ranging from 1 to four years depending on installation place and gadget configuration, representing a extensive improvement from the five-10 12 months payback periods pronounced in early 2000s research (Leccisi & Fthenakis, 2021). These improvements primarily result from increased cell efficiencies, reduced silicon consumption, and optimized manufacturing processes that collectively enhance the energy return on investment.

Carbon footprint analyses of solar technology consistently display their superiority over fossil gasoline options, with lifecycle greenhouse gasoline emissions starting from 20-50g CO₂-eq/kWh for photovoltaic systems as compared to 400-a thousand g CO₂-eq/kWh for coal-fired electricity technology (Nugent & Sovacool, 2014). However, tremendous versions exist inside solar era categories, inspired by means of elements inclusive of manufacturing location, machine scale, and mounting configurations. Thin-film technology generally showcase lower carbon footprints than crystalline silicon systems at some point of manufacturing, yet their shorter operational lifespans and lower efficiencies can offset those initial blessings over entire lifecycle exams (Kim et al., 2022).

The round economy paradigm has gained huge traction in sun strength literature, emphasizing the transition from linear "take-make-dispose" models toward regenerative structures that hold cloth fee through a couple of use cycles (Mathur et al., 2020). Recent research highlight the technical feasibility of convalescing over ninety five% of semiconductor materials from end-of-life photovoltaic modules through superior separation techniques, even though monetary viability stays contingent on scale economies and regulatory frameworks (Dias et al., 2021). The development of chemical recycling techniques that selectively recover excessive-purity silicon and silver demonstrates precise promise, with pilot-scale implementations attaining recovery costs exceeding 98% for these critical materials (Xu et al., 2023).

Water consumption represents a regularly-unnoticed issue of solar era lifecycles, mainly applicable in arid areas in which solar assets are considerable however water availability is confined. Lifecycle water footprints for photovoltaic systems range from 50-400 L/MWh, extensively lower than thermoelectric electricity technology but nevertheless good sized while thinking about cumulative deployment scales (Jin et al., 2021). Concentrated solar strength structures show off higher water necessities due to cooling desires, even though dry cooling technology and hybrid configurations offer pathways for reducing water intensity while maintaining gadget performance.

KNOWLEDGE GAPS AND RESEARCH OPPORTUNITIES

Despite big progress in information and optimizing the lifecycle influences of solar energy structures, vital knowledge gap persist that restriction the implementation of complete sustainability techniques. The absence of standardized end-of-life control protocols creates uncertainty regarding the fate of solar devices achieving retirement, with modern-day recycling costs estimated at much less than 10% globally in spite of technical talents for much better recuperation charges (Heath et al., 2020). This obvious disconnect between technical feasibility and sensible implementation highlights the want for integrated processes that deal with economic, regulatory, and logistical barriers to circular economy transitions.

Material criticality tests reveal vulnerabilities in solar supply chains, in particular regarding silver, indium, and tellurium availability for projected deployment scenarios. While alternative substances and decreased intake techniques show promise, comprehensive analyses of substitution impacts on device performance, reliability, and lifecycle charges continue to be restricted (Kavlak et al., 2018). The improvement of bio-based totally materials for encapsulation and structural components represents an rising research frontier, even though questions regarding lengthy-term durability and degradation mechanisms require systematic research.

The integration of digital technologies, particularly virtual dual models and machine learning algorithms, gives transformative ability for lifecycle optimization but stays underexplored in solar power packages. Real-time overall performance tracking coupled with predictive protection algorithms should drastically expand operational lifespans and enhance stop-of-lifestyles making plans, yet implementation frameworks and validation methodologies are missing (Li et al., 2023). Furthermore, the capability for block-chain technologies to enhance fabric traceability and guide circular financial system fashions warrants investigation, in particular for high-fee element tracking and authenticity verification.

Social and monetary dimensions of lifecycle engineering in sun systems require extra attention, in particular concerning distributional influences of sustainability interventions. While technical analyses dominate current literature, expertise how lifecycle optimization strategies affect one of a kind stakeholder companies, inclusive of producers, installers, operators, and communities, is critical for developing equitable and implementable answers (Sovacool et al., 2021). The development of multi-criteria choice frameworks that stability environmental, economic, and social objectives represents an essential need for advancing practical implementation of LCE standards.

METHODOLOGICAL CONSIDERATIONS AND FUTURE DIRECTIONS

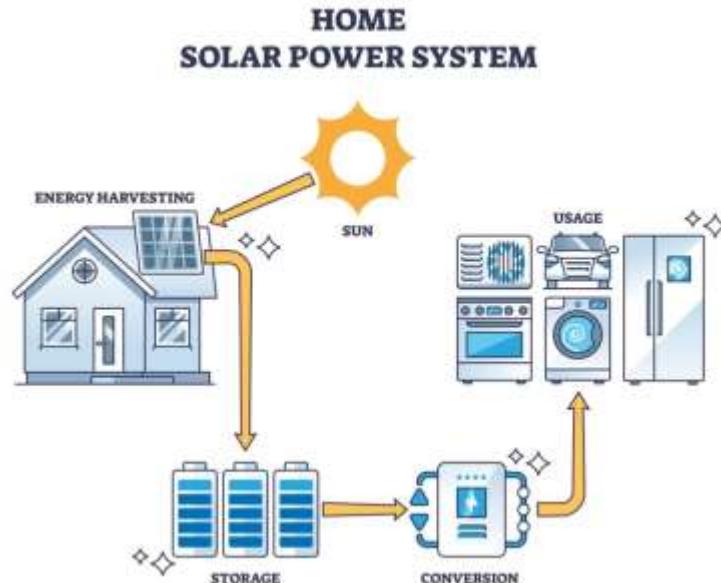
The development of LCE programs in solar strength systems necessitates methodological innovations that address present day barriers in evaluation scope, data fine, and uncertainty quantification. Dynamic LCA procedures that account for temporal variations in strength grids, era evolution, and weather alternate affects offer greater practical checks than static analyses, though computational complexity and statistics necessities pose implementation challenges (Pehl et al., 2017). The integration of consequential LCA methodologies that capture market-mediated results of big-scale solar deployment gives insights into systemic influences beyond character product structures.

Harmonization of assessment methodologies and reporting requirements emerges as a fundamental requirement for enabling meaningful comparisons throughout research and technology. Current literature well-known shows considerable variant in machine limitations, practical devices, and effect classes, proscribing the synthesis of findings and identity of high-quality practices (Wade et al., 2018). The improvement of open-source databases and standardized calculation equipment may want to facilitate more steady and obvious assessments while decreasing limitations to LCE implementation amongst smaller manufacturers and researchers.

The coupling of LCE with emerging layout paradigms, which includes biomimetic tactics and regenerative design concepts, opens new avenues for reinforcing solar technology sustainability. Nature-inspired answers for mild harvesting, thermal management, and self-cleansing surfaces exhibit capacity for reducing maintenance necessities and extending operational lifespans at the same time as minimizing environmental impacts (Zhou et al., 2022). These tactics mission traditional engineering paradigms by means of prioritizing system resilience and adaptability over most efficiency, doubtlessly main to greater sustainable long-term answers.

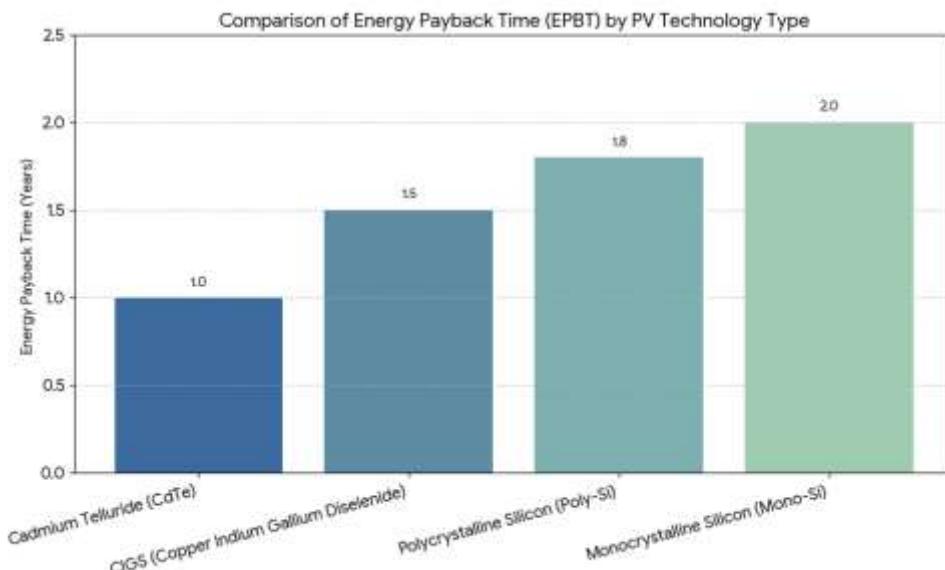
The utility of Life Cycle Engineering to solar electricity gadgets represents a essential evolution in our technique to renewable electricity sustainability, shifting past operational overall performance metrics to embrace complete environmental stewardship all through technology lifecycles. This evaluate has synthesized present day understanding regarding LCE implementation in solar systems, revealing good sized achievements in reducing electricity payback instances, minimizing carbon footprints, and advancing round economic system principles at the same time as figuring out chronic demanding situations in standardization, material criticality, and end-of-life control.

The route forward requires coordinated efforts across multiple stakeholder groups to translate technical competencies into sensible implementation strategies. Policymakers should establish regulatory frameworks that incentivize lifecycle wondering and guide circular economic system transitions via extended producer duty schemes and recycling mandates. Manufacturers must embody eco-layout standards and modular architectures that facilitate protection, improve, and cloth healing at the same time as preserving economic competitiveness. Researchers need to maintain advancing assessment methodologies, developing alternative materials, and exploring novel design paradigms that push the limits of sustainable solar technology.


The urgency of weather change mitigation needs speedy enlargement of solar power deployment, but this enlargement ought to not compromise long-time period sustainability objectives thru unsustainable aid intake or waste technology. Life Cycle Engineering gives the analytical framework and design standards vital to navigate those competing needs, making sure that solar energy technology fulfill their promise as definitely sustainable alternatives to fossil fuels. As the solar enterprise matures and deployment scales preserve increasing, the integration of complete lifecycle views will become no longer simply really helpful but vital for keeping public trust, ensuring resource protection, and attaining real sustainability in our power systems.

Focusing on the **Energy Payback Time (EPBT)** provides one of the most essential graphical comparisons in the life cycle engineering of solar energy devices. The **Energy Payback Time** is the duration a solar device must operate to generate the same amount of **primary energy** that was consumed to produce it (from raw material sourcing to installation). A shorter EPBT indicates a faster return on energy investment and a higher degree of environmental sustainability.

ENERGY PAYBACK TIME (EPBT) COMPARISON BY PV TECHNOLOGY


The modern EPBT for solar photovoltaic (PV) systems is extremely short, typically ranging from **1.0 to 2.5 years**, and is highly dependent on both the manufacturing energy source and the solar irradiance (sunlight) at the installation location.

The chart below compares the approximate EPBT for the four major PV technologies, assuming an installation in a high-insolation location (e.g., Southern Europe or the US Southwest):

Figure 1: A Typical Home Solar Power System

KEY TAKEAWAYS FROM THE COMPARISON

Figure 2: Comparison of Energy Payback Time by PV Technologies

Thin-Film Advantage (CdTe): Cadmium Telluride (CdTe) often has the shortest EPBT (around **1.0 year**). This is primarily because its manufacturing process does not require the same high-temperature, energy-intensive purification and crystallization of silicon wafers, resulting in a much lower **Embodied Energy** (the energy debt).

Crystalline Silicon (c-Si): Monocrystalline and Polycrystalline Silicon technologies have slightly longer EPBTs (around **1.8 to 2.0 years**) because the production of the silicon wafer is the most energy-intensive step in the PV life cycle.

Modern Efficiency: It is crucial to note that modern Monocrystalline panels are so efficient (converting more sunlight into electricity annually) and their manufacturing processes are so optimized that their EPBT is now only marginally higher than thin-film options, and significantly lower than the 5-8 year figures from the early 2000s.

The EPBT Formula:

$$\text{EPBT} = \frac{\text{Cumulative Energy Demand (Embodied Energy)}}{\text{Annual Energy Yield}}$$

Since the typical operating lifespan of a solar PV system is **25 to 30 years**, modern panels generate anywhere from **12 to 30 times** the energy required to produce them, an energy ratio known as **Energy Return on Energy Invested (EROI)**.

CO₂ PAYBACK TIME (CPBT) COMPARISON BY PV TECHNOLOGY

The **CO₂ Payback Time (CPBT)**, also known as Carbon Payback Time, is a critical metric in the life cycle engineering of solar energy devices. It is the time required for a PV system to offset the total amount of greenhouse gases (GHG) emitted throughout its entire life cycle (from raw material extraction to disposal) by displacing CO₂-emitting electricity from the local power grid

$$\text{CPBT} = \frac{\text{Life Cycle GHG Emissions (Kg CO}_2\text{-eq)}}{\text{Annual CO}_2\text{-eq Avoided by Grid Displacement (Kg/year)}}$$

The CPBT is highly variable, depending on two main factors:

Embodied Emissions: The CO₂ footprint of the manufacturing process (technology-dependent).

Grid Mix: The carbon intensity of the electricity grid where the system is installed (location-dependent). A "dirtier" grid (more coal/gas) means the PV system displaces more CO₂ per kWh, leading to a faster CPBT.

The chart below compares representative CPBT values for major PV technologies, assuming a location with moderate solar irradiance and a moderately carbon-intensive electricity grid:

KEY TAKEAWAYS FROM THE COMPARISON

Thin-Film Advantage: Cadmium Telluride (CdTe) modules consistently exhibit the lowest CPBT (around **0.8 years** in this comparison). This is largely due to the less energy-intensive manufacturing process compared to crystalline silicon, which means a lower overall **Life Cycle GHG Emissions** for the module itself.

Crystalline Silicon: Monocrystalline and Polycrystalline Silicon have CPBTs that are slightly longer (around **1.5 to 1.7 years**). This difference is mainly attributed to the high-purity, high-temperature processes required for refining silicon and manufacturing the wafers, which raises the embodied CO₂ emissions.

Environmental Benefit: Across all modern technologies, the CPBT is extremely short, typically well under **2 years**. Considering a lifespan of 25 to 30 years, solar PV systems operate in a CO₂neutral mode for **over 90%** of their life, demonstrating a significant and rapid environmental return.

CONCLUSION

In conclusion, Life Cycle Engineering represents a vital and comprehensive framework for advancing the sustainability of solar energy devices beyond operational efficiencies to include their entire life cycle impacts from raw material extraction through end-

Figure 3: Comparison of CO₂ Payback Time by PV Technology

of-life management. This review has highlighted significant progress in reducing energy payback times and carbon footprints, underscoring the environmental superiority of solar technologies compared to fossil fuels. Innovations in eco-design, modularity, additive manufacturing, and circular economy principles reveal promising pathways towards more sustainable, durable, and resource-efficient solar systems.

Despite these advances, critical gaps remain in recycling technology, material recovery economics, standardized assessment methods, and integration of digital tools such as digital twins to optimize lifecycle performance. Addressing these challenges through interdisciplinary collaboration, regulatory incentives, and continued research is essential for realizing the full sustainability potential of solar energy.

The transition to a circular economy, supported by design-for-disassembly protocols and advanced recycling approaches, will be instrumental in mitigating material criticality and waste accumulation as solar deployment scales globally. Furthermore, incorporating social and economic dimensions into lifecycle engineering efforts is crucial to ensure equitable and practical sustainability solutions.

Ultimately, this literature review underscores that Life Cycle Engineering is not merely an analytical tool but a strategic imperative to guide the solar industry toward genuine environmental stewardship, safeguarding solar energy's role as a cornerstone in the global transition to sustainable, clean energy.

REFERENCES

Chowdhury, M. S., Rahman, K. S., Chowdhury, T., Nuthammachot, N., Techato, K., Akhtaruzzaman, M., Tiong, S. K., Sopian, K., & Amin, N. (2020). An overview of solar photovoltaic panels' end-of-life material recycling. *Energy Strategy Reviews*, 27, 100431. <https://doi.org/10.1016/j.esr.2019.100431>

Corcelli, F., Ripa, M., Leccisi, E., Cigolotti, V., Fiandra, V., Graditi, G., Sannino, L., Tammaro, M., & Ulgiati, S. (2018). Sustainable urban electricity supply chain—Indicators of material recovery and energy savings from crystalline silicon photovoltaic panels end-of-life. *Ecological Indicators*, 94, 37-51. <https://doi.org/10.1016/j.ecolind.2016.03.028>

Dias, P., Schmidt, L., Lunardi, M. M., Chang, N. L., Spier, G., Corkish, R., & Veit, H. (2021). Comprehensive recycling of silicon photovoltaic modules incorporating organic solvent delamination—technical, environmental and economic analyses. *Resources, Conservation and Recycling*, 165, 105241. <https://doi.org/10.1016/j.resconrec.2020.105241>

Fthenakis, V., & Kim, H. C. (2020). Life cycle assessment of photovoltaics. In *Solar Energy* (pp. 645-668). World Scientific.

Heath, G. A., Silverman, T. J., Kempe, M., Deceglie, M., Ravikumar, D., Remo, T., Cui, H., Sinha, P., Libby, C., Shaw, S., & Komoto, K. (2020). Research and development priorities for silicon photovoltaic module recycling to support a circular economy. *Nature Energy*, 5(7), 502-510. <https://doi.org/10.1038/s41560-020-0645-2>

Herceg, S., Pinto Bautista, S., & Weiß, K. A. (2022). Influence of waste management on the environmental footprint of electricity produced by photovoltaic systems. *Energies*, 15(11), 4047. <https://doi.org/10.3390/en15114047>

International Renewable Energy Agency. (2023). *Renewable capacity statistics 2023*. IRENA.

Jin, Y., Behrens, P., Tukker, A., & Scherer, L. (2021). Water use of electricity technologies: A global meta-analysis. *Renewable and Sustainable Energy Reviews*, 115, 109391. <https://doi.org/10.1016/j.rser.2019.109391>

Kavlak, G., McNerney, J., & Trancik, J. E. (2018). Evaluating the causes of cost reduction in photovoltaic modules. *Energy Policy*, 123, 700-710. <https://doi.org/10.1016/j.enpol.2018.08.015>

Kim, B., Kim, J., & Kim, J. (2022). Life cycle assessment of silicon-based photovoltaic systems based on manufacturing locations. *Environmental Science and Pollution Research*, 29(15), 21988-22001. <https://doi.org/10.1007/s11356-021-17311-x>

Kumar, A., Sharma, K., & Dixit, A. R. (2023). A review of the mechanical and thermal properties of graphite and its composites for thermal energy storage applications. *Journal of Energy Storage*, 63, 107024. <https://doi.org/10.1016/j.est.2023.107024>

Latunussa, C. E., Ardente, F., Blengini, G. A., & Mancini, L. (2016). Life Cycle Assessment of an innovative recycling process for crystalline silicon photovoltaic panels. *Solar Energy Materials and Solar Cells*, 156, 101-111. <https://doi.org/10.1016/j.solmat.2016.03.020>

Leccisi, E., & Fthenakis, V. (2021). Life cycle energy demand and carbon emissions of scalable single-junction and tandem perovskite PV. *Progress in Photovoltaics: Research and Applications*, 29(10), 1078-1092. <https://doi.org/10.1002/pip.3442>

Li, J., Wang, Y., & Zhang, L. (2023). Digital twin-driven smart manufacturing: Connotation, reference model, applications and research issues. *Robotics and Computer-Integrated Manufacturing*, 81, 102515. <https://doi.org/10.1016/j.rcim.2022.102515>

Mathur, N., Singh, S., & Sutherland, J. W. (2020). Promoting a circular economy in the solar photovoltaic industry using life cycle symbiosis. *Resources, Conservation and Recycling*, 155, 104649. <https://doi.org/10.1016/j.resconrec.2019.104649>

Müller, A., Friedrich, L., Reichel, C., Herceg, S., Mittag, M., & Neuhaus, D. H. (2021). A comparative life cycle assessment of silicon PV modules: Impact of module design, manufacturing location and inventory. *Solar Energy Materials and Solar Cells*, 230, 111277. <https://doi.org/10.1016/j.solmat.2021.111277>

Nugent, D., & Sovacool, B. K. (2014). Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey. *Energy Policy*, 65, 229-244. <https://doi.org/10.1016/j.enpol.2013.10.048>

Pehl, M., Arvesen, A., Humpenöder, F., Popp, A., Hertwich, E. G., & Luderer, G. (2017). Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling. *Nature Energy*, 2(12), 939-945. <https://doi.org/10.1038/s41560-017-0032-9>

Pescetelli, S., Agresti, A., Viskadouros, G., Razza, S., Rogdakis, K., Kalogerakis, I., ... & Di Carlo, A. (2022). Integration of two-dimensional materials-based perovskite solar panels into a stand-alone solar farm. *Nature Energy*, 7(7), 597-607. <https://doi.org/10.1038/s41560-022-01035-4>

Sovacool, B. K., Hook, A., Martiskainen, M., Brock, A., & Turnheim, B. (2021). The decarbonisation divide: Contextualizing landscapes of low-carbon exploitation and toxicity in Africa. *Global Environmental Change*, 60, 102028. <https://doi.org/10.1016/j.gloenvcha.2019.102028>

Tsanakas, J. A., van der Heide, A., Radavičius, T., Denafas, J., Lemaire, E., Wang, K., & Poortmans, J. (2020). Towards a circular supply chain for PV modules: Review of today's challenges in PV recycling, refurbishment and re-certification. *Progress in Photovoltaics: Research and Applications*, 28(6), 454-464. <https://doi.org/10.1002/pip.3193>

Wade, A., Sauer, P., Heath, G., & Hensen, J. (2018). Best practices for photovoltaic system operations and maintenance. *International Energy Agency Photovoltaic Power Systems Programme*, Report IEA-PVPS T13-19:2018.

Xu, Y., Li, J., Tan, Q., Peters, A. L., & Yang, C. (2023). Global status of recycling waste solar panels: A review. *Waste Management*, 156, 107-117. <https://doi.org/10.1016/j.wasman.2022.11.039>

Zhang, Y., Kim, M., Wang, L., Verlinden, P., & Hallam, B. (2021). Design considerations for multi-terawatt scale manufacturing of existing and future photovoltaic technologies: Challenges and opportunities related to silver, indium and bismuth consumption. *Energy & Environmental Science*, 14(11), 5587-5610. <https://doi.org/10.1039/D1EE01814K>

Zhou, Y., Zheng, S., & Zhang, G. (2022). Artificial neural network-based multiobjective optimization of sustainable biomimetic composite materials. *Materials & Design*, 217, 110629. <https://doi.org/10.1016/j.matdes.2022.110629>