

The Narrative Paradigm of Artificial Intelligence and the Interpretation of its Implications

Xiaoquan Pan

Xingzhi College, Zhejiang Normal University, Jinhua, China

pxq@zjnu.cn

Abstract: The narrative paradigm shift driven by artificial intelligence is fundamentally reconstructing the underlying logic of human meaning production. In technical dimension, the integration of intelligent technologies transforms narrative elements into computable data, driving the emergence of nonlinear narratives. In interpretive dimension, algorithmic power manifests a paradoxical duality of liberation and discipline within narrative democratization, triggering an ontological crisis (involving the dissolution of the subject and the alienation of the symbolic order). In cultural dimension, diverse agents engage in power contests within the intertextual field, revealing the crisis of narrative justice inherent in techno-capital dynamics. This paper emphasizes on constructing a future of human-machine symbiotic narrative necessitates establishing a new, ethically-prioritized social contract. Achieving an ontology of co-being meaning requires critical value alignment among stakeholders.

Keywords—human-computer interaction; artificial intelligence narrative; natural language generation; narratology; media transformation

1. INTRODUCTION

The fabric of human civilization is undergoing profound reshaping amidst an unparalleled digital tsunami. Concurrently, narrative, the enduring cultural conduit threading through history, is experiencing a profound paradigmatic revolution. Functioning as a core system for meaning-making, narrative has perpetually served as a vital mechanism for the sustenance of civilization and the transmission of values. As evidenced by the transition from heroic epics in ancient oral traditions to the novelistic revolution within print culture, each major technological-medial transition precipitates fundamental restructuring within narrative architectures (Murray, 1997). Resonating with Heidegger's assertion that technology is not merely an instrumental tool but a mode of "unconcealing", the pervasive integration of intelligent technologies is actively reconstituting the very ontology of narrative itself (Heidegger, 1977). From the cuneiform inscriptions on Sumerian clay tablets to the typographical culture of the Gutenberg printing press, the ways humans narrate and comprehend reality have been intrinsically shaped by the evolution of media (Goody, 1977).

Since the late 20th century, the global proliferation of the internet and the explosive iteration of digital technologies have engendered a global "network society" that transcends physical spatiotemporal boundaries (Hilbert, 2020). Within this milieu, the traditional linear, closed narrative structure predicated on the "author-text-reader" triad is facing dissolution (Barthes, 1977): The hyperlink structures inherent in hypertext dissolve stable reading sequences (Schurer et al., 2023); emergent narratives within digital games contest the author's absolute authority (Murray, 1997); and the rise of User-Generated Content (UGC) fueled by the Web 2.0 paradigm has normalized spontaneous, polyphonic collective storytelling (Jenkins, 2006). Echoing Jean-François Lyotard's

pronouncement on the decline of "grand narratives" (Lyotard, 1979), the digital paradigm fundamentally reshapes the genetic code of narrative as a vehicle of meaning—from its morphological structure and modes of signification, to its mechanisms of power production. Consequently, the theoretical foundations of classical narratology are undergoing substantial tremors (Sommer, 2012). Collectively, these transformations unveil a pivotal proposition: As the foundational modes of narrative construction and comprehension are disruptively reconfigured, a profound transformation, which affects the very bedrock of human cognition and sociocultural organization, is already underway.

The rapid integration of Artificial Intelligence (AI) technologies has ignited the most explosive core engine for the experimental "genetic recomposition" of narratives, thereby fundamentally restructuring the modalities and semantic essence through which we construct, perceive, and comprehend stories. Whereas early digital narratives predominantly relied on human agency as the ultimate content source and meaning arbiter, the advent of Generative AI and Artificial General Intelligence (AGI) directly intervenes in the core processes of narrative creation—challenging "authorship", the foundational concept of narratology (Sanchez-Lopez et al., 2020).

Language models (e.g., GPT series) instantaneously generate highly structured story scripts from vast corpora (Elkins et al., 2023); deep learning-powered narrative agents autonomously extrapolate plot trajectories while dynamically responding to reader/user inputs (Yang et al., 2025); affective computing-enabled systems even discern characters' psychological depths and project nuanced emotional fluxes (Kapase. & Uke, 2025). The resulting narrative paradigm transcends mere instrumental enhancement. It constitutes a "synesthetic co-narration" mediated through code between humans and machines—a multidimensional ecosystem that surpasses linear constraints, perpetually expanding through the

interplay of interactivity, generativity, and emergence (Liu, 2025).

This revolutionary framework profoundly reconfigures the core chain of narrative construction, dissemination, and interpretation (Manovich, 2002). Critical inquiries thus emerge: How does this unprecedented narrative morphology reorganize human experience? What profound ethical and epistemological challenges might its cognitive impact pose to individual consciousness and social governance? Exploring these questions extends beyond expanding the horizons of literary theory—it provides a critical aperture for understanding new possibilities in the construction of human subjectivity within the intelligent age (Floridi, 2014). This study focuses on the generative logic of AI-driven narratives, their interactive hermeneutic systems, and their latent sociocultural reshaping effects, aiming to delineate the cognitive cartography and future paradigm blueprint of this “mutually empowering symbiosis between narrative and AI”.

2. TECHNOLOGICAL EMPOWERMENT: THE FOUNDATIONAL LOGIC OF AI NARRATIVE

2.1 Paradigm Shifts in Natural Language Generation

The evolution of Natural Language Generation (NLG) technology is undergoing a foundational shift in logic, transitioning from rule-driven to data-driven approaches. Early symbolic paradigms relied on hand-crafted grammatical rules and finite templates (e.g., Finite-State Automata), producing highly structured yet creativity-deficient narratives limited to constrained combinatorial outputs within closed domains (Reiter & Dale, 2000). Although statistical language models (e.g., N-gram) incorporated probabilistic optimization, they remained constrained by shallow representations of local dependencies.

The revolutionary breakthrough of deep learning stems from two core pillars: 1) The Transformer architecture, through its self-attention mechanism, models long-range semantic dependencies, fundamentally deconstructing the linear constraints of sequential processing (Islam et al., 2024); and 2) The pre-training and fine-tuning paradigm leverages vast unannotated corpora to construct generalized linguistic representations, endowing models with narrative capabilities that transcend specific tasks (Bonfigli et al., 2024). Billion-parameter-scale models typified by the GPT series (Casola et al., 2022) have redefined text generation pathways via autoregressive modeling: during decoding, tokens are dynamically predicted based on probability distributions, essentially approximating linguistic probability manifolds within high-dimensional parameter spaces. This end-to-end learning paradigm compresses linguistic knowledge into neural network weights, resolving the module fragmentation inherent in traditional pipeline-based NLG systems. Consequently, narrative generation achieves unprecedented global coherence and contextual sensitivity (See et al., 2017).

This technological refactoring triggers a triple revolution in narrative generation paradigms: 1) Displacement of

Creative Agency: AI shifts from an instrumental auxiliary role to an autonomous narrative agent, where creative ideation emerges through vector operations in latent space. 2) Transformation of Production Mechanisms: The traditional linear “planning-generating-polishing” workflow is supplanted by implicit reasoning within a unified neural network. Models concurrently orchestrate plot development, stylistic control, and emotional inflection during decoding (Wang et al., 2025). This foundational logic can be conceptualized as a synergistic interplay between probabilistic grammar and neuro-symbolic computation (Andreas, 2022). 3) Transition in Narrative Scale: Large-scale pretrained models transcend the localized perspective limitations imposed by the Markov assumption. Leveraging attention weight distributions, they maintain thematic coherence across passages, endowing generated text with human-like macro-structural narrative capabilities (Dai et al., 2019).

The philosophical significance of this breakthrough resides in the reconfiguration of “meaning generation” in narrative construction: as language generation shifts from symbolic logic systems to computation within geometric embedding spaces, the process becomes a nonlinear transformation of high-dimensional vectors. Herein, human associative cognition and machine weight optimization achieve profound epistemological resonance (Goodfellow et al., 2016).

2.2 Data-Driven Reconfiguration of Narrative Elements

Traditional narratology, framed within linguistic and semiotic paradigms, conceptualizes narrative as a “semiotic encoding system for human experience”. However, within the context of Artificial Intelligence (AI), this system undergoes a fundamental deconstruction. The semantics of narrative elements are disassembled into quantifiable, interrelatable discrete data nodes, establishing a “data-algorithm” driven paradigm for meaning production.

First, character construction shifts from psychological depiction to feature vectorization. AI no longer relies on Freudian psychoanalysis to imbue characters with depth. Instead, through embedding models (e.g., BERT, GPT), characters' personalities, motivations, and relationships are decoupled into multi-dimensional vectors (word embeddings). Character behavioral logic is consequently determined by probability distributions rather than moral or emotional continuity. For instance, OpenAI's ChatGPT utilizes personality trait databases (e.g., Big Five Personality Traits) and associative graphs to generate character-consistent behaviors (Piastra & Catellani, 2025).

Second, plot progression transforms from causal chains to state transition networks. The classic narrative structure of “conflict-resolution” is reconfigured by Markov Decision Processes (MDPs) (Riedl & Bulitko, 2013). This reconfiguration strips narrative of its ontological depth, rendering it a computable topology of meaning. Here, narrative “authenticity” hinges on the statistical significance of

training data rather than humanistic reflexivity (Manovich, 2020).

Within this data-driven framework, the narrative functions of setting and spatio-temporality are also redefined. Traditional “scenes” become tunable parameter spaces: physical environments are modeled at the object level using 3D point-cloud data and semantic segmentation maps; social contexts are deconstructed into dynamic knowledge graphs whose relational edge weights update in real-time based on user behavioral data (Yang et al., 2023). Such reconfigurations enable AI to generate narrative dimensions that transcend Euclidean spatio-temporal logic (Kabashkin et al., 2025).

Crucially demanding scrutiny is the data narrative’s disruptive reconceptualization of perspective (point of view). When viewpoint ceases to be confined by narrational levels defined in literary focalization theory (Genette, 1980) and instead evolves into the algorithm’s real-time response to user profiles. Empirical studies demonstrate that this personalized data flow transforms readers from “meaning interpreters” into topological nodes within a latent space (Eg et al., 2023). Narrative authority is thereby entirely ceded to algorithms constituting a collective unconscious, synthesized through collaborative filtering and latent factor models (LFM). This shift catalyzes an epistemic transition towards posthuman forms of narrative cognition.

3. FOUR PARADIGMS OF AI NARRATIVES

Artificial Intelligence (AI) has evolved from a purely technical concept into a fundamental element structuring societal cognition, resulting in a multidimensional landscape of narratives concerning its understanding and expression. These narratives act not merely as vehicles of information; their core structure—an interweaving of rational logic and humanistic imagination—fundamentally shapes public perception, expectations, and ethical assessments of AI technology. Based on the specific configurations and dominant modes of fusion between these two core elements (rational logic and humanistic imagination), AI narratives can be systematically categorized into four paradigms: the Scientific Narrative Paradigm, the Mediatized Narrative Paradigm, the Speculative Narrative Paradigm, and the Poetic Narrative Paradigm. These four paradigms constitute core analytical prisms for understanding the contemporary social construction of AI (Castells, 2009; Mosco, 2004).

The Scientific Narrative Paradigm is grounded firmly in the discourse systems of natural science and engineering. It adheres to logical empiricism as its cardinal principle, resting on foundations of falsifiability and algorithmic transparency. Its core intent is the precise explication or description of AI systems’ operational mechanics, performance boundaries, and application possibilities within specific contexts. This narrative exhibits a pronounced instrumental rationality (Strandberg, 2025), framing AI as a toolkit for complex system optimization, data analysis, and automated decision-making, where functional utility is the paramount value metric. Its

argumentative structure typically follows a rigorous linear path: “Problem (Task)- Model/Algorithm Design - Experimental Validation - Performance Evaluation - Application Prospects”. For instance, the case of AlphaGo defeating human Go champions, within the scientific narrative, is focused on the intricate collaboration between the Monte Carlo Tree Search (MCTS) algorithm and Convolutional Neural Networks (CNN), and its breakthrough performance in imperfect information games (Silver et al., 2016). However, this paradigm has limitations: its relative neglect of value rationality (e.g., AI’s ultimate societal purpose, impacts on power structures) and its proneness to techno-optimism (“techno-solutionism”) can lead to the oversimplification of complex social and ethical issues inherently embedded within the technology (Zuboff, 2019). This narrative constructs a cognitive image of technological reliability and controllability, reinforcing public understanding of AI as an “objective tool”, yet potentially dulling awareness of its complex social embeddedness.

The Mediatized Narrative Paradigm operates predominantly within popular domains such as news media, political discourse, and social media. Centering on public comprehensibility and value orientation, it involves the “translation” or “transcreation” of specialized AI concepts and events into information forms accessible and relatable to the public. This process relies heavily on the imaginative construction of metaphors and imagery (e.g., “super-brain”, “black box”, “runaway”, “assistant”, “partner”) to reduce cognitive load and elicit resonance or concern (Lakoff & Johnson, 1980). The imagination within this narrative is not purely fantastical but serves distinct purposes of cognitive schemata construction and social mobilization (e.g., advocating regulation vs. embracing innovation). It shapes dominant public interpretive frameworks concerning “AI as threat or opportunity” through discursive struggles (Hilgartner, 1990). For example, narratives framing “AI causing mass unemployment” often emphasize vivid displacement scenarios and metaphors evoking “crisis” and “fairness” (e.g., “machines replacing humans”), serving agendas supporting enhanced social welfare or retraining systems; conversely, “AI-enabled development” narratives frequently employ imagery like “efficiency revolution” or “innovation dividend”, promoting positive industrial policies. This narrative paradigm is highly dynamic; its core imagery and frames often shift rapidly with societal currents. It constructs the most widespread public image of, and social consensus (or conflict) around, AI’s meaning (Neff & Nagy, 2018), exerting crucial influence over the allocation of real-world societal resources, including policy, investment, and talent flows.

Science Fictional Narrative places imagination at the center stage. By constructing future contexts or fictional worldviews (Suvin, 1979), it employs cognitive estrangement as a stance to conduct thought experiments and profound moral warnings concerning Artificial Intelligence (AI) and its potential socio-ethical, ontological, and human-machine relational consequences. This narrative mode deliberately

transcends the constraints of current technology; it is not intended to predict technological roadmaps. Rather, it fundamentally challenges seemingly progressive contemporary logics (such as the alienation inherent in instrumental reason, the dissolution of humanity, and social control) while simultaneously imagining alternative possibilities (Hayles, 1999). Its rational foundation resides in the narrative's internal logical consistency, its perceptible mediation of technological principles (even when fictitiously extrapolated), and its deep extrapolation concerning the evolution of humanity/society. This narrative often employs extreme settings as speculative prisms, interrogating themes like AI autonomy run amok (The Matrix), the ethical status of AI upon attaining subjectivity (Her), or AI interventions in life transformation (episodes dealing with consciousness copies in Black Mirror). By eliciting strong emotional responses (dread, pathos, awe), it prompts viewers to question technoutopianism, reflect upon core human values, and proactively stimulate discussions about AI ethics, human responsibility, and future societal structures (Dourish & Bell, 2014). The constructed space of cognitive experimentation inherent to science fictional narrative constitutes the core source of its impact, providing a valuable "early-warning system" and frame of reference for technological governance in the real world.

Poeticized Narrative transcends specific functional debates and immediate crises, exploring, through a unique dimension of poetic intellectuality, the significance of AI as an entity—whether concrete or metaphorical—for the human condition. It diverges from science fiction's radical extrapolations, science's purely quantitative analyses, and the utilitarian framework competition endemic to media discourse. Instead, it seeks to synthesize technological insight (the dimension of reason) with deep aesthetic contemplation and abstract philosophical inquiry (the dimension of imagination/poetics), directly addressing the profound domains of life, consciousness, understanding (Verstehen), and ultimate meaning (Heidegger, 2001). Its central concern is: How can humanity "poetically dwell" within a world increasingly constituted by algorithms and data? Utilizing metaphor, imagery, symbolism, and highly condensed emotional structures as its primary expressive means, it explores the existential estrangement, cognitive vertigo, disintegration of memories, entangled affections (and even the boundaries of human-AI emotion), the origins of creation, and temporal perception shifts. An AI "poetry generator" created by an artist remains mere instrumental mimicry if it only replicates form; successful poeticized narratives provoke deep readerly uncertainty regarding the nature of language and subjective expression (Porter & Machery, 2024). For instance, Machine Hallucinations uses algorithms to generate fluid abstract spaces, triggering deep ontological contemplation on the relationship between consciousness and reality; the film After Yang crafts a subdued, contemplative philosophical poem on "loss" through the subtle bearing of cultural memories by an android. This mode blurs the boundaries of agency, diminishes

instrumentalist perspectives, and elevates AI into either a vehicle for philosophical meditation or a trigger for aesthetic experience. Ultimately, it seeks to re-anchor humanity's ultimate value coordinates and modes of spiritual residence in an era of rapid technological change, culminating in a profound Heideggerian questioning of authentic "dwelling" (Heidegger, 2001).

4. INTERPRETATION OF MEANING: CULTURAL CONTESTATION IN THE INTERTEXTUAL FIELD

4.1 The Dual Facets of Narrative Democratization

The narrative tools driven by artificial intelligence are profoundly rewriting the internal structure and social logic of narrative production. The most significant manifestation of this shift is the process of narrative democratization enabled by technology-mediated empowerment. The rigid professional barriers and technical thresholds of traditional narrative fields are significantly eroding under the impact of the low-cost, low-skill interfaces offered by AI models (such as Large Language Models (LLMs), text generation models, and audio-visual generation models). Users can bypass years of aesthetic conditioning and technical accumulation, leveraging simple natural language instructions or basic data inputs to rapidly generate narrative imagery, text, short plays, and even text fragments possessing rudimentary plot coherence. This process constitutes not merely a physical broadening of access to the role of creator, but a fundamental challenge to the ontological understanding of "who the storyteller is". As media theorist Jenkins notes: "Participatory culture within media convergence redistributes narrative authority" (Jenkins, 2006), and AI technology undoubtedly pushes this redistribution to a deeper level. It creates opportunities for a wider range of "grassroots" voices historically marginalized by traditional media to enter the mainstream discourse of meaning interpretation, manifesting as an explosive proliferation of diverse value systems. The rise of the "network society", theorized by Castells, finds new realization through the torrent of AI-facilitated individual narratives (Castells, 2010), making unprecedented technical forms of narrative "decentralization" conceivable.

However, the reverse side of this democratization, imbued with revolutionary promise, reveals itself as implicit fetters woven by algorithms and data capital. The very technological foundations of this purported decentralized liberating force are often suffused with preference logics and implicit biases inherent to dominant cultural structures. Serving as static sedimentations of past human expression, training data inevitably carries historical "cultural scripts", including gender stereotypes (e.g., women often confined to supporting roles), class-based discursive patterns (the recurring coupling of specific narrative styles and paths to success), and regional cultural biases. As Arora et al. (2023) argued that the indiscriminate learning of historical data by AI models leads them to unintentionally reinforce cultural prejudices that ought to be deconstructed, this form of "data colonialism" (Coudry & Mejias, 2019) potentially imposes implicit aesthetic

paradigms and cultural frameworks onto nascent narratives, meaning that superficial “free” narrative production conceals an undercurrent of narrative convergence.

Nielsen and Fletcher (2020) pointed out that so-called creative democratization, under the subtle inducements of platform algorithms, may well be fostering “highly personalized cultural cages”, resulting in homogeneity beneath an appearance of pluralistic values. Consequently, behind the technologically bestowed “narrative freedom”, cultural parameters defined by platform rules and objectives (typically maximization of traffic or commercial conversion rates) determine which narratives become visible and which expressions are “recognized” and amplified by the algorithmic system, thereby participating in broader contests for cultural meaning. As Landow (2006) observed, the link structures themselves within hypertextual environments embody configurations of power. In the intertextual ocean of AI narratives, selecting which data is used for training and designing the logic of algorithmic distribution constitute, in themselves, deeper structural questions of cultural politics.

4.2 The Crisis of Deconstructed Ontological Meaning

The core driver of narratives surrounding artificial intelligence (AI) – exemplified by large language models (LLMs) like ChatGPT – lies in the process of their knowledge construction, which unveils a novel landscape where foundational ontological assumptions are profoundly challenged. The essential function of LLMs is to capture, simulate, and reconfigure vast, latent patterns and correlations within massive corpora of human-generated text (Brown et al., 2020). Consequently, their generative process exhibits a distinct quasi-intertextuality. Unlike human textual production, grounded in the intentionality of a subject absorbing texts produced by others (as conceptualized in Kristeva’s intertextual theory of textual transposition, Kristeva, 1980), AI generation operates more akin to a post-subjective self-perpetuating mechanism (Joseph, 2025). Text generation emerges as the optimal representation of statistical similarity and probability distributions. Its chain of signification ultimately traces back to and becomes lost within a vast latent space composed of the original training data, which is conceptualized as a preexisting “symbolic mine” (Flusser, 2011) forged from the textual history of humankind. Within this domain, the AI does not function primarily as a dialogic agent engaging in meaning selection and interpretation derived from subjective experience, in the manner of a traditional author. Rather, it becomes the unconscious polyphonist of the colossal corpus itself. In this process, meaning exhibits extreme liquidity and decentralization. The metaphorical grounding of the text as a projection of subjective psychic existence is subtly dissolved by data-driven emergence (Hayles, 1999). The position of the human subject within the creative chain of meaning becomes suspended by the mechanistic correlations enacted within the “algorithmic black box”. The determinacy of ontological meaning tends towards fluidity and blurring within the endless,

de-subjectified play of referential networks (Guizzardi & Guarino, 2024).

A deeper ontological crisis emerges from the inherent alienation of the symbolic order itself and its fundamental deconstruction of subjective existence. As AI “creation” increasingly infiltrates core human systems of meaning production (e.g., news, literature, academia), the intermingled human-machine textual space expands dramatically. The traditionally stable field of meaning, established intersubjectively through human interpretation and critique (Conrad, 2022), progressively transforms into a field of cultural negotiation between algorithmic data logic and human intentionality. On the one hand, while AI appears capable of “understanding” and “producing” symbols, its semiotic operations strictly obey a detached code-based logic, disassociated from the foundations of human being-in-the-world whose foundations rooted in embodied experience and ethical care. The associations AI establishes within its interpretive networks represent mere data pattern-matching, devoid of ontological resonance, lived attestation, or the confirmation inherent in shared experience (Stiegler, 2018). When such algorithm-driven, logic-dominated symbolic artifacts massively permeate the human spirit via cultural production, they forcefully reshape and even undercut the intertextual cultural sphere built upon intersubjective understanding. The foundations of cultural experience are eroded by digital rationality. The core of meaning – namely, humanity’s capacity, as the interpreting subject, to bestow unique value upon the world and its fundamental ontological status – undergoes unprecedented, profound destabilization. Humanity, the creator of symbolic meaning, simultaneously confronts the crisis of being potentially “expelled” by its own technological logic from the very core of its existence. This marks a profound ontological displacement: the paradoxical condition wherein the human slips from being the central agent of meaning construction towards the periphery of the symbolic field.

4.3 Discursive Power Struggles in Narrative Culture

Within the process of AI-driven narrative reconstruction, the essence of discursive power struggle manifests as a negotiation of power among multiple agents within an intertextual field. Traditional narrative authorities (e.g., professional authors, cultural institutions) face dual deconstruction by algorithmic systems and User-Generated Content (UGC). Algorithms not only implicitly filter and sequence narrative content through recommendation mechanisms but also reshape cultural valuation standards as meta-narrative constructors (Chen & Huang, 2024). For instance, Netflix’s personalized recommendation system, via deep mining of user behavioral data, transforms “viewing preferences” into a “logic of narrative meaning generation”, effectively displacing traditional aesthetic criteria of film criticism with “datafication efficacy” (Bucher, 2018). This power shift instigates what Habermas (1991) termed the alienation of communicative rationality—as algorithms

become the “invisible hand” of meaning interpretation, discursive power within the cultural public sphere shifts from humanistic deliberation towards computational hermeneutics dominated by technical logic.

Crucially, the struggle is not unidirectional suppression. Traditional authorities employ algorithmic counter-domestication strategies to reclaim discursive space. For example, The New York Times utilizes AI tools to enhance the precision of disseminating investigative narratives, thereby reasserting the interpretive weight of journalistic professionalism within the algorithmic ecosystem (Carlson, 2018). The core struggle at this stage revolves around contesting interpretive legitimacy: whether the “user demand” defined by data models or the “cultural consciousness” rooted in humanistic tradition should serve as the benchmark for determining narrative meaning.

Technologically empowered user collectives emerge as a novel pole in this struggle, forming adversarial interpretive communities through participatory practices. OpenAI’s GPT models further grant non-professional creators trans-individual narrative capacity. Leveraging prompt engineering, they reconstruct the ideological frameworks of canonical texts (e.g., feminist deconstruction in AI-rewritten adaptations of *Journey to the West*). Such practices challenge Benjamin’s (1968) assertion regarding the “withering of the aura in the age of mechanical reproduction”. Instead, AI engenders an algorithmic aura—a collective re-production of meaning activated through technological plasticity (Manovich, 2020).

However, digital democratization obscures emerging power configurations: the corpora underpinning generative AI are embedded with Anglocentric cultural coding (Lu et al., 2025), leading to the systemic marginalization of non-Western narratives within meaning-making chains. This reveals that discursive power struggles constitute an issue of cultural political economy. When algorithmic infrastructure becomes the new means of semiotic production, tech giants controlling model training capabilities and data ownership ultimately dictate the distributive justice of meaning within the intertextual field (Foucault, 1977; Zuboff, 2019).

5. THE NARRATIVE FUTURE OF HUMAN-AI SYMBIOSIS

The rapid advancement of generative artificial intelligence and its deep integration into diverse scenarios of narrative creation and practice are instigating fundamental transformations in human-machine interactive narrative forms. A narrative future centered on “Co-creativity” is emerging. Future narrative practices will increasingly be conceptualized as complex, dynamic “human-technological actor-networks”, wherein intelligent agents are no longer viewed merely as tools for human manipulation or competitors mimicking human ability. Instead, they are embedded within creative systems as Joint Narrative Agents endowed with generative autonomy. This profound collaboration represents not only an efficiency revolution in narrative workflows but, more significantly, a philosophical deconstruction and reconfiguration of narrative

subjectivity. As suggested by the concept of “nonconscious cognition” proposed by post-humanist theorist Katherine Hayles (Hayles, 1999), while machine symbol manipulation lacks the intrinsic experiential quality of human subjects, it expands the cognitive horizons of narrative composition, driving the formation of a “distributed narrative intelligence” paradigm. The narrative subject is no longer stably anchored in the “human author” but rather disseminated throughout the continuous dialogue and intentional coordination between humans and technology.

However, the landscape of symbiotic narrative remains fraught with intricate ethical complexities and aesthetic challenges. Foremost is the issue of embedded power structures and values: training data inevitably carries historically sedimented social biases and cultural constraints. As AI intervenes in narrative choices (e.g., plot twists, character development, linguistic style), how can its algorithmic outputs avoid amplifying discourses of inequality? A deeper paradox lies in its “tragic lack of consciousness” – while algorithms can meticulously parse narrative conflict structures, they inherently lack the capacity to authentically experience emotion itself. Can the “trauma narratives” they generate possess ethical depth that transcends mere mimesis? For instance, Microsoft Xiao Ice’s poetry collections, while syntactically elegant, have been critiqued as formalistic shells lacking the “emotional core” derived from lived, painful experience (Berg, 2025).

Charting a path towards a constructive and humane symbiotic future necessitates establishing a New Narrative Contract prioritizing ethics. Its core principle is to regard AI as a collaborator with “restricted agency”. While leveraging its powerful potential in pattern recognition and heterogeneous data association, ultimate value judgments must reside with humans (Benford & Giannachi, 2011). This involves clearly defining the machine’s role as a “Co-producer of Meaning” rather than the “origin of meaning” (Androutsopoulou et al., 2019), and guiding system value alignment with human values through algorithmic transparency mechanisms and deep human editorial intervention.

Educationally, cultivating a new generation of narrative creators with “critical collaborative literacy” is imperative – equipping them to discern both the potential and limitations of intelligent tools while safeguarding the ethical essence of narrative amidst technological surges (UNESCO, 2023). More radically, co-creation can be envisioned as a “bridge for cross-species experiential perception”. As futurist Bernard Stiegler articulated (Stiegler, 2018), narrative experiences collaboratively constructed by humans and machines could evolve into a new episteme (mode of knowledge), reconstituting the affective bonds connecting the individual to the Other (including non-human Others). If AI can aid in narrating a more diverse spectrum of lived human experiences and foster empathetic resonance, it holds the potential to activate the imaginative forces underpinning social cohesion (Couldry & Hepp, 2016).

Therefore, human-AI symbiosis is not the end-point of a technological utopia, but rather a point of rebirth for narrative as a civilizational medium in a new epoch. It compels humanity to abandon the myth of absolute narrative control and acknowledge the collaborative role of intelligent agents in our world-making narratives. We will co-construct a narrative polyphony, a world imbued with richer possibilities, born from the intertwining of the profundity of human experience and the complexity of machine extrapolation (Manovich, 2020). This does not diminish human subjectivity; rather, it elevates it through the tensions of collaboration. At the frontier of deeply interpenetrated human-AI narration, every act of co-telling becomes a rehearsal of future ways of being. The ultimate goal is for humans and artificial agents, within this continually evolving meaning network, to witness and empower each other.

6. CONCLUSION

The AI-driven transformation of narrative paradigms has transcended mere instrumental upgrades, fundamentally reshaping the foundational logic of human meaning production. This study reveals that: 1) At the technological level, the neurosymbolic integration of Natural Language Generation (NLG) and the datification of narrative elements facilitate a paradigmatic shift from linear causality to algorithmic emergence; 2) At the hermeneutic level, algorithmic power and data colonialism engender a paradoxical duality in narrative democratization – simultaneously emancipatory and dominative – while triggering profound crises of subjectivity erosion and ontological displacement; and 3) At the cultural-political level, traditional authorities, platform capitalism, and user communities engage in discursive contests within intertextual fields, reflecting narrative justice dilemmas inherent to technocapitalism.

The narrative future of human-AI symbiosis necessitates a new sociotechnical covenant centered on ethical primacy, critical collaboration, and value alignment. This entails acknowledging algorithmic agency while safeguarding the core of humanistic spirit, ultimately guiding the collaborative co-evolution of technology and humanity toward a co-created meaning ecosystem.

REFERENCES

[1] Andreas, J. (2022). Language Models as Agent Models. In *Findings of the Association for Computational Linguistics: EMNLP 2022*, (pp. 5769-5779), Abu Dhabi, United Arab Emirates. Association for Computational Linguistics.

[2] Androutsopoulou, A., Karacapilidis, N., Loukis, E., & Charalabidis, Y. (2019). Transforming the communication between citizens and government through AI-guided chatbots. *Government Information Quarterly*, 36(2), 36(2). <https://doi.org/10.1016/j.giq.2018.10.001>

[3] Arora, A., Barrett, M., Lee, E., Oborn, E., & Prince, K. (2023). Risk and the future of AI: Algorithmic bias, data colonialism, and marginalization. *Information and Organization*, 33(3): 100478. <https://doi.org/10.1016/j.infoandorg.2023.100478>

[4] Barthes, R. (1977). *Elements of Semiology*. Hill & Wang Press.

[5] Benford, S. & Giannachi, G. (2011). *Performing Mixed Reality*. The MIT Press.

[6] Benjamin, W. (1968). *Illuminations: Essays and Reflections*. Ed. Hannah Arendt. Trans. Harry Zohn. New York: Schocken Books.

[7] Berg, M. (2025). From Mead to Machine: Conversational Choreographies With ChatGPT and the Emergence of the Socio-Technical Self in Generative AI. *Symbolic Interaction and AI*. <https://doi.org/10.1108/S0163-239620250000061003>

[8] Bonfigli, A., Bacco, L., Merone, M., & Dell'Orletta, F. (2024). From pre-training to fine-tuning: An in-depth analysis of Large Language Models in the biomedical domain. *Artificial Intelligence in Medicine*, 157: 103003. <https://doi.org/10.1016/j.artmed.2024.103003>

[9] Bucher, T. (2018). *If...Then: Algorithmic power and politics*. Oxford University Press.

[10] Carlson, M. (2018). Automating judgment? Algorithmic judgment, news knowledge, and journalistic professionalism. *New Media & Society*, 20(5), 1755-1772. <https://doi.org/10.1177/1461444817706684>

[11] Casola, S., Lauriola, I., & Lavelli, A. (2022). Pre-trained transformers: an empirical comparison. *Machine Learning with Applications*, 9: 100334. <https://doi.org/10.1016/j.mlwa.2022.100334>

[12] Castells, M. (2009). *Communication Power*. Oxford University Press.

[13] Castells, M. (2010). *The Rise of the Network Society* (2nd ed. Vol. I). Wiley-Blackwell.

[14] Chen Y., & Huang, J. (2024). Effective Content Recommendation in New Media: Leveraging Algorithmic Approaches. *IEEE Access*, 12, 90561-90570. <https://doi.org/10.1109/ACCESS.2024.3421566>

[15] Conrad, C. (2022). Communication and the principle of intersubjectivity: Towards an integrational account of communication, part 1. *Language & Communication*, 86, 10-17. <https://doi.org/10.1016/j.langcom.2022.06.006>

[16] Couldry, N. & Hepp, A. (2016). *The Mediated Construction of Reality*. Polity Press.

[17] Couldry, N., & Mejias, U. A. (2019). *The Costs of Connection: How Data Is Colonizing Human Life and Appropriating it for Capitalism*. Stanford University Press.

[18] Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q., & Salakhutdinov, R. (2019). Transformer-XL: Attentive Language Models beyond a Fixed-Length Context. In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics* (pp. 2978-2988), Florence, Italy. Association for Computational Linguistics.

[19] Dourish, P., & Bell, G. (2014). "Resistance is futile": Reading science fiction alongside ubiquitous computing. *Personal and Ubiquitous Computing*, 18(4), 769-778. <https://doi.org/10.1007/s00779-013-0678-7>

[20] Eg, R., Tønnesen, Ö. D., & Tennfjord, M. K. (2023). A scoping review of personalized user experiences on social media: The interplay between algorithms and human factors. *Computers in Human Behavior Reports*, 9: 100253. <https://doi.org/10.1016/j.chbr.2022.100253>

[21] Elkins, S., Kochmar, E., Serban, I., & Cheung, J. C. (2023). How Useful Are Educational Questions Generated by Large Language Models? In *International Conference on Artificial Intelligence in Education* (pp. 536-542). Springer.

[22] Floridi, L. (2014). *The Fourth Revolution: How the Infosphere Is Reshaping Human Reality*. Oxford: OUP.

[23] Flusser, V. (2011). *Into the Universe of Technical Images*. University of Minnesota Press.

[24] Foucault, M. (1977). *Discipline and Punish: The Birth of the Prison*. Harmondsworth: Penguin.

[25] Genette, G. (1980). *Narrative Discourse: An Essay in Method*. Cornell University Press, Ithaca and New York.

[26] Goodfellow, I., Bengio, Y., & Courville, A. (2016). *Deep Learning*. MIT Press, Cambridge, MA.

[27] Goody, J. (1977). *The Domestication of the Savage Mind*. Cambridge University Press

[28] Guizzardi, G., & Guarino, N. (2024). Explanation, semantics, and ontology. *Data & Knowledge Engineering*, 153: 102325. <https://doi.org/10.1016/j.datark.2024.10232>

[29] Habermas, J. (1991). *The Structural Transformation of the Public Sphere: An Inquiry into a Category of Bourgeois Society*. The MIT Press.

[30] Hayles, N. K. (1999). *How We Became Posthuman: Virtual Bodies in Cyberspace*. University of Chicago Press.

[31] Heidegger, M. (1977). *The Question Concerning Technology, and Other Essays*. Harper Torchbooks

[32] Heidegger, M. (2001). *Poetry, Language, Thought*. Harper Perennial.

[33] Hilbert, M. (2020). Digital technology and social change: the digital transformation of society from a historical perspective. *Dialogues in Clinical Neuroscience*, 22(2): 189-194. <https://doi.org/10.31887/DCNS.2020.22.2/mhilbert>

[34] Hilgartner, S. (1990) The Dominant View of Popularization: Conceptual Problems, Political Uses. *Social Studies of Science*, 20, 519-539. <http://dx.doi.org/10.1177/030631290020003006>

[35] Islam, S., Elmekki, H., Elsebai, A., Bentahar, J., Drawel, N., Rjoub, G., & Pedrycz, W. (2024). A comprehensive survey on applications of transformers for deep learning tasks. *Expert Systems with Applications*, 241: 122666. <https://doi.org/10.1016/j.eswa.2023.122666>

[36] Jenkins, H. (2006). *Convergence Culture: Where Old and New Media Collide*. NYU Press.

[37] Joseph, J. (2025). The algorithmic self: how AI is reshaping human identity, introspection, and agency. *Frontiers in Psychology*, 16: 1645795. <https://doi.org/10.3389/fpsyg.2025.1645795>

[38] Kabashkin, I., Zervina, O., & Misnev, B. (2025). AI Narrative Modeling: How Machines' Intelligence Reproduces Archetypal Storytelling. *Information*, 16(4): 319. <https://doi.org/10.3390/info16040319>

[39] Kapase, A. B., & Uke, N. A. (2025). comprehensive review in affective computing: an exploration of artificial intelligence in unimodal and multimodal emotion recognition systems. *International Journal of Speech Technology*, 28, 541-563. <https://doi.org/10.1007/s10772-025-10202-3>

[40] Kristeva, J. (1980). Word, Dialogue and Novel. In L. S. Roudiez (Ed.), *Desire in Language: A Semiotic Approach to Literature and Art* (pp. 64-91). New York, NY: Colombia University Press.

[41] Lakoff, G., & Johnson, M. (1980). *Metaphors we live by*. Chicago: The University of Chicago Press.

[42] Landow, G. P. (2006). *Hypertext 3.0: Critical Theory and New Media in an Era of Globalization*. Johns Hopkins University Press.

[43] Liu, Y. (2025). Five perspectives on the digital: a sociological interpretation. *The Journal of Chinese Sociology*, 12: 21. <https://doi.org/10.1186/s40711-025-00248-w>

[44] Lu, J. G., Song, L. L. & Zhang, L. D. (2025). Cultural tendencies in generative AI. *Nature Human Behavior*, 9, 2360-2369. <https://doi.org/10.1038/s41562-025-02242-1>

[45] Lyotard, J.-F. (1979). *La condition postmoderne: Rapport sur le savoir*. Editions de Minuit.

[46] Manovich, L. (2002). *The Language of New Media*. The MIT Press.

[47] Manovich, L. (2020). *Cultural Analytics*. The MIT Press.

[48] Mosco, V. (2004). *The Digital Sublime: Myth, Power, and Cyberspace*. The MIT Press.

[49] Murray, J. H. (1997). *Hamlet on the Holodeck: The Future of Narrative in Cyber-space*. Free Press.

[50] Neff, G., & Nagy, P. (2018). Agency in the digital age: Using symbiotic agency to explain human-technology interaction. In Z. Papacharissi (Ed.), *A Networked Self*:

Human Augmentics, Artificial Intelligence, Sentience. Routledge.

[51] Nielsen, R. K., & Fletcher, R. (2020). Democratic Creative Destruction? The Effect of a Changing Media Landscape on Democracy. In N. Persily & J. A. Tucker (eds.), *Social Media and Democracy: The State of the Field, Prospects for Reform* (pp. 139-162). Cambridge University Press.

[52] Piastra, M., & Catellani, P. (2025). On the emergent capabilities of ChatGPT 4 to estimate personality traits. *Frontiers in Artificial Intelligence*, 8: 1484260. <https://doi.org/10.3389/frai.2025.1484260>

[53] Porter, B., Machery, E. (2024). AI-generated poetry is indistinguishable from human-written poetry and is rated more favorably. *Scientific Reports*, 14: 26133. <https://doi.org/10.1038/s41598-024-76900-1>

[54] Reiter, E., & Dale, R. (2000). *Building Natural Language Generation Systems*. Cambridge University Press.

[55] Riedl, M., & Bulitko, V. (2013). Interactive Narrative: An Intelligent Systems Approach. *AI Magazine*, 34(1), 67-77. <https://doi.org/10.1609/aimag.v34i1.2449>

[56] Sanchez-Lopez, I., Perez-Rodriguez, A., & Fandos-Igado, M. (2020). The explosion of digital storytelling. Creator's perspective and creative processes on new narrative forms. *Helicon*, 6(9): e04809. <https://doi.org/10.1016/j.heliyon.2020.e04809>

[57] Schurer, T., Opitz, B., & Schubert, T. (2023). Mind wandering during hypertext reading: The impact of hyperlink structure on reading comprehension and attention. *Acta Psychologica*, 233: 103836. <https://doi.org/10.1016/j.actpsy.2023.103836>

[58] See, A., Liu, P. J., & Manning, C. D. (2017). Get To The Point: Summarization with Pointer-Generator Networks. In *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics* (Volume 1: Long Papers), pages 1073-1083, Vancouver, Canada. Association for Computational Linguistics.

[59] Silver, D., Huang, A., Maddison, C. et al. (2016). Mastering the game of Go with deep neural networks and tree search. *Nature*, 529, 484-489. <https://doi.org/10.1038/nature16961>

[60] Sommer, R. (2012). *The Merger of Classical and Postclassical Narratologies and the Consolidated Future of Narrative Theory*. Diegesis.

[61] Stiegler, B. (2018). *The Neganthropocene*. Open Humanities Press.

[62] Strandberg, C. (2025). Shifting Scope: A Model of Instrumental Rationality. *Theoria*, 91(4): e70005. <https://doi.org/10.1111/theo.70005>

[63] Suvin, D. (1979). *Metamorphoses of science fiction: On the poetics and history of a literary genre*. Yale University Press.

[64] Wang, Z., Azmart, M., Li, A., Horesh, R., & Yurochkin, M. (2025). Speculate, then Collaborate: Fusing Knowledge of Language Models during Decoding. *arXiv-CS-Computation and Language*. <https://doi.org/arxiv-2502.08020>

[65] Yang, C., Gross, M., & Wampfler, R. (2025). Steering Narrative Agents Through a Dynamic Cognitive Framework for Guided Emergent Storytelling. In *Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment*, 21(1), 377-387. <https://doi.org/10.1609/aiide.v21i1.36841>

[66] Yang, S., Hou, M., & Li, S. (2023). Three-Dimensional Point Cloud Semantic Segmentation for Cultural Heritage: A Comprehensive Review. *Remote Sensing*, 15(3): 548. <https://doi.org/10.3390/rs15030548>

[67] Zuboff, S. (2019). *The Age of Surveillance Capitalism: The Fight for a Human Future at the New Frontier of Power*. PublicAffairs.