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Abstract: In contrast to second lower and upper approximations of B using non incident edges systems, the primary idea of this
work is to generate and investigate second lower and upper approximations of 8 admixture vertex edges systems as well as second
lower and upper approximations operators of B using incidence vertex edges systems. Furthermore, we made use of The second
accuracy of the approximation of a subgraph. B < & is investigated, along with some of its features, using (incidence, non-

incidence, and admixture) vertex edges systems.
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1. INTRODUCTION:

Two factors make graph theory a significant and

intriguing area of mathematics that is primarily utilized in
discrete mathematics. From a mathematical perspective, the
graph is visually appealing. Even though they are simple
relation graphs, they can be used to depict a variety of
mathematical graphs, such as harmonic objects and
topographic space. The second reason is that graphs will be
very useful in practice when many concepts are empirically
represented by them. Numerous theoretical and practical
applications can be found in the branch of mathematics
known as topological graph theory [1, 2, 3, 4, 5, 8, 09]. In
order to bridge the gap between topology and applications, we
believe that topological graph structure will be crucial. We
consult Harary [6] for all graph theory jargon and
nomenclature, and Moller [7] for all topology language and
notation.A few fundamental ideas of graph theory [10] are
introduced. A graph is pair § = (V(§), E(§)) where V(%) is
a non-empty set whose elements are called points or vertices
(called vertex set) and E(E ) is the set of unordered pairs of
elements of V() (called edge set). An edge of a graph that
joins a vertex to itself is called a loop.
A subgraph of a graph & is a graph each of whose vertices
belong to V(&) and each of whose edges belong to E(E ). An
empty graph if the vertices set and edge set is empty. A degree
of avertexiinagraph & isthe number of edges of § incident
with i. Let & = (V(E), E(¥)) be a graph then the incidence
vertex edges set of i is denoted by INVE(i) and defined
by: INVEG) = {e € E(§):e = (1,2 for some & € V(§)}.
The non-incidence vertex edges set of i is denoted by
NINVE(i) and defined by: NINVEG) ={e € E(§):e =
(e ¥) and 2, # ifor som 2% € V(§)} . The incidence
vertex edges system (resp. non-incidence vertex edges
system) of a vertex i € V(&) is denoted by INVES(i) (resp.
NINVES(1)) and defined by:

INVES(1) = {INVE(i)}(resp.NINVES(i) = {NINVE()}) .
The admixture vertex edges system of a vertex i € V(§) is
denoted by AVES(i) and defined by: AVES(i) =
{INVES(1) ,NINVES(1)}, such that such that AVE(i) €
AVES(1) . The A-space is the pair (§,Y;) such that § is a
graph and ¥;:V(§) — P(P(IE(E ))) is a mapping which
assigns for each 1 in V(&) its admixture vertex edges system
in P(P(E(Z))).

2. Second New Approximation Operators Using

Admixture Vertex Edges Systems:

Presenting a set-theoretic basis for granular computing
with admixture vertex edges systems is the goal of this
section. Taking the generalized approximation space into
account I' = (V(&), E(E)),we created a new definition of the
lower and upper approximation operators using admixture
vertex edges systems. The approximations are made using
(incidence, non-incidence, and admixture) vertex edges
systems.

Definition 2.1. Let I = (V(%), E(%)) be a generalized
approximation space and B < &. Then:

(1) The second lower and upper approximations of $ using
incidence vertex edges system are denoted by L? (IE (‘B)) and

UZ(E($)) and defined by:
such that INVE(1) € E(B)

L(E) = |
¢ € E(€) such that INVE(}) N E(B) # (23}_

UZ(E(B)) ={ L
where t incidence on ¢
(2) The second lower and upper approximations of B using

non-incidence vertex edges system are denoted by L%(]E(EB))
and UZ(E(S)) and defined by:

2 _ (e € E(¥) there exsist i incidence on e }
L (ED) = { such that NINVE(i) € E(B)

2 _ (e € E(¥) such that NINVE(@#) N E(B) # (25}
UR(ECR)) { where i incidence on e '

¢ € E() there exsist t incidence on e}
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(3) The second lower and upper approximations of B using
admixture vertex edges system are denoted by L2 (E(%))
and U2(EE(S)) and defined by:

Lﬁ(IE(‘B)) _ {e € E(&) there exsist t incidence on e}

such that AVE(1) € E(B)
¢ € E(¥) where tincidence on e}

2 —

Ua (E(SB)) h { forall AVEG) NE(B) # @
Definition 2.2. Let I' = (V(), E(¥))be a generalization
approximation space and B < &. Then:
(1) The second boundary, positive and negative regions of
B using incidence vertex edges system are denoted by
Bd?(E(B)), POS?(E(B)) and NEGZ(E(P)) and defined
by:

Bd? (E(BB)) = UF(E(B)) — L (E(B)).

POS (E()) = L{(E(P)).

NEGf (E(B)) = E(¥) — U (E(B)).
(2) The second boundary, positive and negative regions of
B using non-incidence vertex edges system are denoted by
Bd2(E(B)), POSZ(E(B)) and NEGZ(E(B)) and defined
by:

BdZ(E(B)) = UZ(E(B)) — LL(E(P)).

POSZ(E(B)) = L& (E(B)).

NEGZ(E(B)) = E(¥) — UZ(E(P)).
(3) The second boundary, positive and negative regions of
B using admixture vertex edges system are denoted by
Bd2(E(B)), POS2(E(B)) and NEGZ(E(®B)) and defined
by:

BdZ(E(B)) = UZ(E(B)) — LA(E(B)).

POSZ(E(B)) = LA(E(B)).

NEGZ(E(P)) = E(%) — UZ(E(P)).
Definition 2.3. Let I = (V(%), E(Z)) be a generalized
approximation space. The second accuracy of the
approximation of B < & using (incidence, non-incidence,
and admixture) vertex edges system are denoted

by 7 (E()), f2 (E(B)) and f3(E(P)) and defined
respectively by:

Y IBEE®)
FE®) = 1- e,
i . IBEE®)
BE) = 1 - — e
o BRE®)

It is obvious that 0 < f2(E(B)) < 1, 0 < f2(E(B)) < 1 and
0 < f2(E(B)) < 1. Moreover, if {2 (E(B)) = 1 or

f2(E(P)) = 1 or f2(E(B)) = 1 then P is called P-definable
("B-exact) otherwise, it is called B-rough.

Proposition 2.4. Let I = (V(%), E(%)) be a generalized
approximation space and B < &. Then B is exact if and only
if UZ(E(P)) < L3(E(B)).

Proof: Clear.

Example 2.5. Let I = (V(§ ), E(§)) be a generalized
approximation space, I induced of figure(2.1) such that

VE) = {il:iz,is,i4}! EE@) ={e; = (1,11),e; =
(i1, 14), €3 = (i, 13), ¢4 = (i, 14), €5 = (i3, 14)}.

51

iy, 9

Figure 2.1: graph & given in example 2.5
Then INVE(i;) = {eq, ¢,}, INVE(i,) = {ej, e,}, INVE(i3) =
{es, e}, INVE(i,) = {ey,e4,65}. And
NINVE(i;) = {e3, ¢4, ¢5}, NINVE(i,) = {eq, e5, 5},
NINVE(i;) = {e, e,,¢,}, NINVE(i,) = {e;,¢3} . And
AVE(;) = {{ey, e,}, {e3, 4, 53}, AVE(i,) =
{{93. e}, {eg, ey, 95}}' AVE(i;) = {{93' es), {eg, ey, 94}}'

AVE(i,) = {{92. ey es} {eg, e3}} .
Accordingly, can be obtain the following tables

Table 2.1: L2(E(B)), LA(E(B)) and L2(E(P)) forall P € E

E(B) LIESP) | LAEEP) | LA(EH)
{el} ¢ ¢ ¢
{e;} ¢ ¢ ¢
{es} ¢ ¢ ¢
{es} ¢ ¢ ¢
{es} ¢ ¢ ¢
{ei, e} {es, e5} ¢ {e1, e5}
{ey, e3} ) {ez 60,65} | (e, ¢4 ¢5)
{e1, ¢4} ¢ ¢ ¢
{e1, 5} ¢ ¢ ¢
{ez, €3} ¢ ¢ ¢
{e2 ¢4} ¢ ¢ ¢
{ez e} ¢ ¢ ¢
{es ¢4} {es, ¢4} ¢ {es, ¢4}
{e3, e5} {es, e5} ¢ {e3, e5}
{es e} ¢ ¢ ¢
{e1, e;,e3} {e1, e,} {ez, s 85} | (e, e, ¢4 €]
{e1, e;,¢4} {e1, e} {es, es} {el, 5,5, €]
{e1, e, e5} {e1, e,} {e3, €4} {e1,e;,e3,¢,]
{e,,¢5,¢,) {e3,¢4) ¢ {e5, ¢4}
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{e1, 5, ¢5,¢,} E(®) E(®) E(®)
{e1, 5, ¢35, ¢5} E(®) E(®) E(®)
{e), e3¢, €5} E(%) E(%) E(%)
{e1, e3¢, 5} E(®) E(®) E(®)
{e1, 65, ¢4, €5} E(®) E(®) E(®)
E(®) E(®) E(®) E(®)
¢ ¢ ¢ ¢
Table 2.3: Bd?(E(B)), Bd2(E(P)) and BdZ(E($)) for all
PCE.
E(P) Bdf (E()) | BAA(E(P)) | BAZ(E(B))
{e} {es} {es, €4, €5} ¢
{e2} {es, ez} {es} ¢
{es} {es} {e;, e} ¢
{es} {es} {e ) ¢
{es} {es} {ei} ¢
{e), e,} ¢ {es, 4, €5} ¢
{eq, €3} {ey, e3} {es, e3} {ey, e3}
{e1, €4} {e1, ez, ¢,} E(®) {e1, ez, €.}
{e), es} {e1, ey, e5} E(%) {e1, ey, €5}
{ez, €3} E(®) E(§) E(§)
{ez, ¢4} {e1, ez, ¢,} {es, e3} {e}
{e,, €5} {e1, ey, e5} {e1, e3} {e1}
{es, ¢4} {es} {e), e, €5} {es}
{es, e5} {es} {e1, ez, €.} {es}
{eq4 €5} {es ¢4, €5} {e;, e3} {es}
{e1, e, €3} {es ey, €5} {e;, e3} {e3)
{e1, ez, ¢,} {e.} {e1, ez, ¢,} {e,}
{e), e, e5} {es} {e), e, 5} {es}
{es,e3,¢,} {e1, ey, €5} E(%) {e1, 5, e5}
{e,, e3¢5} {e1, ez, ¢,} E(%) {e1, ez, ¢,}
{es, 4, €1} {e1, 5, €5} {e, ¢35} {e,}
{es, ¢4, €5} ? {es, 4, €5} )
{es, €5.¢,} E(®) E(§) E(§)
{es e5, ¢} {e,, €5} {e), ¢35} {e,, ¢35}
{e, e3¢5} {e1, ez, ¢,} {e1, e3} {e1}
{e1, 65, ¢5,¢,} {es} {e} ?
{e1, 5, ¢35, ¢5} {es} {e} )
{es, e3,¢,, €5} {el} {es, 4, €5} )
{e1, e3¢, 5} {es, ez} {es} )
{e1, 5, ¢4, €5} {es} {e1, e} )
E(§) ¢ ¢ ¢
¢ ¢ ¢ ¢

{ey e3¢5} {es, €5} ¢ {es, €5}
{es ey, ¢} {es, €4} {e2, ¢4, €5} {es, €3, ¢4, ¢5]
{es ey €5} {es, €4, €5} {e1 €5} E(®)
{es, e5,¢.} ¢ ¢ o}
{es, e5,¢5} {es, e5,¢,} ¢ {es, e5,¢5}
{e1, €3, 5} {es, e5} {ez, e 65} | {e;,¢5,¢,, €5
{e1,e5,e3,¢,} | {eg, 5,5, ¢,} {e2, €3, ¢4, €5} E(®)
{e1,e5,e3,e5} | {eg, 5,5 €5} {ez €3, €4, €5) E(®)
{ez,e3,¢4,e5} | {ey,€3,¢4 €5} {e1, €2} E(§)
{e1,e3,e4,65} | {es,e4, 85} {er €5, €4 5} E(®)
{e1,ex,e4,e5} | {eg, €5, ¢4 €5} {e3, €4, €5} E(¥)
E(%) E(¥) E(¥) E(®)
¢ ¢ ¢ ¢
Table 2.2: UZ(E(B)), UZ(E(P)) and UZ(E(P)) for all P <
g
E(B) Uf (E(P)) UA(E(B)) | UZ(E(B))
{e1} {ei} {es ey e5} ¢
{e} {er, e} {es} o}
{es} {es} {e1, e} ¢
{es} {es} {ei} ¢
{es} {es} {e ) ¢
{e1, e} {e1, e} {es, €4, €5} ¢
{e1, e} {e1, e} E(¥) {e1, e}
{er eq} {er ey, ¢4} E(§) {er, ez ¢4}
{e1, e} {er, ey, €5} E(®) {er, e 65}
{e;, €3} E(®) E(®) E(®)
{ez, €4} {e1, e, ¢4} {e1, e} {ed}
{e, e} {e1, e, 5} {e1, e} {ed}
{es, €4} {es, ey, €5} {e1, e 5} {es}
{es, e} {es, ey, €5} {e1, e, ¢4} {es}
{e4, €5} {es, €4, €5} {e1, e} {es}
{e1, ez, €3} E(®) E(®) E(®)
{e1,e,e4} {e1, €5, ¢4} E(§) {er, ez, ¢4}
{er, €5, €5} {ei, ey €5} E(¥) {er, e, ¢5}
{e, e3,¢,} E(®) E(®) E(®)
{es, €5, e5} E(®) E(¥) E(¥)
{er, e3,e,} E(¥) E(¥) E(¥)
{es, ey, ¢5) {es ey, e5) E(8) {es, €4, €5}
{es, 4, €5} E(®) E(®) E(®)
{es, €4, €5} E(®) {e1, e} {e1, e}
{e), e3¢5} E(®) E(®) E(®)

Table 2.2: NEGZ(E(B)), NEGZ(E(B)) and NEGZ(E(B)) for

all pc&.
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E(P) NEG? (E(B))| NEG7(E())| NEG(E(P))
{e1} {e;, e3,¢4, €5} {e1, 5} E(®)
{e,} {es, 64,85} | {eg, ¢4, €53 E(%)
{es} {e1,e5,e4, 65} {es, e, €5} E(%)
{e,} {e1, ez, ¢35, e5}| {ey,€5,¢,4, €5} E(®)
{es} {e1, e, ¢35, ¢4} {e;, €5, ¢4, €5} E(%)
{e), e} {es, 4, €5} {e, e,} E(%)
{e, e3} {e, ¢4, €5} Y {es, ¢4, €5}
{e1, e,} {es, e5} U {es, e5}
{e, es} {es,e,} 9 {es, .}
{e;, e3} ? ) )]
{es, 64} {es, e5} {es} {es, e5}
{e,, €5} {es,e,} {es, 64,65} | {ey,e5,¢4, €5}
{es, ¢4} {e1, e;} {es, ¢4} {e1,e5,¢5,¢,}
{es, €5} {e1 e;} {es, s} {e1,e5, €5, €5}
{es s} {e), e;} ey, eq, 65} | {e,e5,¢4, €5}
{eq, e, €5} )] ) @
{e1, ez, €.} {es, e5} Y {es, e5}
{es, ez, e5} {es, €4} 9 {es, .}
{e,e3,¢,} ? ) ]
{e,, e5,¢5} 1] 0] ]
{23, €4, el} @ @ (D
{es, ¢4, €5} {e1, e;} Y {e1, e;}
{e4, 5, ¢4} 1] 0] ]
{e4 e5, €} Y {es e5, €} {es e5, €}
{e1, ¢35, €5} 1] 0] ]
{e1, ¢35, €5, ¢4} 1) 0] ]
{e1, e, €5, €5} [} ? ?
{e,,e3,¢,, €5} o ) )]
{e1,e5,¢4, 85} o ) )]
{e1, €5, ¢4, €5} [} ? ?
E(§) ? 0) 0]
¢ E(§) E(§) E(§)
Table 2.4: 7 (E(B)), 17 (E(PB)) and f2(E(B)) forall B € &
E(B) fF(E(B) | TR(E(P)) fA(E(B))
{e:} 4/5 2/5 1
{e;} 3/5 4/5 1
{es} 4/5 3/5 1
{e4} 4/5 4/5 1
{es} 4/5 4/5 1
G 1 2/5 1
{es, e5} 3/5 3/5 3/5
{eq, ¢4} 2/5 0 2/5
{e1, e5} 2/5 0 2/5
{ey, e3} 0 0 0

{es, ¢4} 2/5 3/5 4/5
{e,, e5} 2/5 3/5 4/5
{es, ¢4} 4/5 2/5 4/5
{es, 5} 4/5 2/5 4/5
{e,, 5} 2/5 3/5 4/5
{e1, e, 3} 2/5 3/5 4/5
{e,e,,¢,} 4/5 2/5 4/5
{eq,e,,e5} 4/5 2/5 4/5
{e,,e3,e4} 2/5 0 2/5
{ey, e5,e5} 2/5 0 2/5
{es, ey, .} 2/5 3/5 4/5
{es, e4, €5} 1 2/5 1
{es e5,¢.} 0 0 0
{ey, e5, 5} 3/5 3/5 3/5
{e1, e3¢5} 2/5 3/5 4/5
{e1,e5,e3,¢4} 4/5 4/5 1
{e1,e;,e5,e5} 4/5 4/5 1
{e,,e5,¢4, €5} 4/5 2/5 1
{e1,e3,e,,¢5} 3/5 4/5 1
{er, ez,e4, 05} 4/5 3/5 1
E(%) 1 1 1
I 1 1 1

Theorem 2.6. Let I' = (V(&), E(§)) be a generalized
approximation space and P < &. Then:

(1) LZ(E(B)) = LF(E(P)) U LE(E(B)).

(2) UZ(E(B)) = U7 (E(PB)) N UZ(ECP)).

(3) BAZ(E(B)) = Bd? (E(B)) N BdZ(E(P)).

(4) NEG3(E(B)) = NEG{ (E(B)) U NEGA(E(B)).

(5) f2(E(B)) = max{f; (E(P)), fA(E(B))}.

Proof:

(1) Lete € LZ(E(P)) « 3 iincidence on e such that
AVE(i) € E(B) & INVE(i) € E(B) v NINVE®) <
E(P) @ e € LZ(E(B)) vV e€ LA(E(P)) © e€
(L2(E()) U LA (E(P)))hence LA (E(E)) =

LI (E(B)) U L4 (E(B)).

(2) Let e € UZ(E(B)) < where i incidence on e

for all AVE(i), AVE(i) N E(B) # @ & (INVEGH) N E(B) #
@) A (NINVEG®) NE(PB) # 0) & e € UF(E(P)) A e€
UZ(E®) &

e € (UZ(E(P)) N UZ(E(E))) hence, UZ(E(H)) =

U7 (E(B)) N UZ(E(D)).

(3) Lete € BA2(E(B)) = e € UZ(E(P)) A e g

L2 (E(P)) since e € UZ(E(P)) by (2) above we get e €
(VZCE(B)) N UZ(ECD))) = e € UZ(E(F)) and e €
U2(E(B)). Since e ¢ L2(E(B)) by (1) above we get e &
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(L2EEP)) ULA(ECP))) = e ¢ LZ(E(B)) and e ¢

L2 (E()) hence e € Bd?(E(P)) and e € Bd2(E(B)) =
e (Bdiz(IE(‘B)) anf,(]E(sB))).SO BA2(E(B)) <
(Ba2(E(B)) NBAZ(E(E))) — — - (1)

Conversely, e € (Bdiz(]E(‘B)) ﬂBdﬁ(]E(EB))) =e€
BdZ(E($)) and e € Bd2(E(P)), since e € BdZ(E(P)) =
e € U?(E(B)) and e ¢ LZ(EE(P)) and since e €
BdZ(E(P)) = e € UZ(E(PB)) and e ¢ LZ(E(P)), hence
e € (UZ(E(B)) NUZ(E(®))) by (2) above we get e €

U2(E(P)) ande ¢ (L2 (E(B)) ULZA(E(B))) by (1) above
we get e ¢ LZ(E(P)) then e € Bd2(E(P)).

So (Ba(E()) N BA3(ECP))) € BAZ(EH)) ——— (2) .

From (1) and (2) Bd2(E(B)) =

(Bd?(E(E)) NBA2(E(T))).

(4) Lete € NEG2(E(B)) = e ¢ UZ(E(P)) by (2) above
we get = e ¢ [UZ(E(B)) NUZ(E(P))] = e ¢
UZ(E(B)) V e ¢ UZ(E(P)) = e € NEGH(E(PB)) V e €
NEGZ(E(B))

thus NEG3 (E(B)) S NEG{ (E($)) U NEGE(E(B)) — — —
(1). Lete € [NEG?(E(P)) UNEGE(E(P))| = e €
NEGZ(E(B)) v e € NEGZ(E(B)) = e ¢ UZ(E(B)) Ve ¢
UA(E(PB)) = e & [U7(E(B)) N UA(E(B))] by (2)
above we get = e ¢ UZ2(E(B)) = e € NEG2(E(D))
thus NEG{ (E(B)) U NEGA(E(B)) € NEG3(E(P)) — — —
(2). From (1) and (2) we get NEG2(E(B)) =

NEG{ (E(%B)) U NEG; (E(%B)).

(5) By (3) above we get Bd2(E()) =

BdZ(E(P)) N BdZ(E(P))

= BdZ(E(®)) < Bd?(E($B)) and hence |Bd2(E(B))| <

) [BAZ(ECP)| _ [BdF (ECH)| _
Ba(ECB) = “por = o = !

[BZ(ECD))| |Bd (ECB))|
Q2 1- T fa(E(B)) = 7 (E(P)). In
the same way we get f2(E(B)) = f2(E(B)) thus

73 (E(P)) = max{f} (E(B)), f2(E(B))}-
Proposition 2.7. (Lower 2 properties)

Let I = (V(§), E(§)) be a generalized approximation space
and B,k € & Then:

(L) LA(E(®) = E(¥).

(L3) If E(B) < E(K), then LZ(E(P)) < L2(E(K)).
(L3) L3 (E(B) N E(K) < LZ(E(B)) n LZ(EK)).
(L3) LZ(E(P)) U LE(E(K)) < LA(E(B)UE(K)).
(L) LZ(E(P)) = E®) — [UZ(E®) — E(B))].
Proof:

(L2) Clear from definition (2.1.(3)).

(L) Let E(B) < E(K) and e € L3(E(S)), then there
exist  incidence on e such that AVE(i) € E(®B), since

E(B) € E(K). Thus we have AVE(i) € E(K) hence e €
LZ(E(k)) and so L% (E(B)) <€ L5 (E(K)).

(L2) Since (E(B) N E(K)) € E(B) by (L2) above we get
L2(E(B) N E(K)) < LA(E(B)) — — — (1). And since
(E(B) N E(K)) € E(K) by (L2) above we get L2(E(B) N
E(k)) € L2(E(K)) — — — (2). From (1) and (2) we have
LZ(E(B) NE(K) < L (E(B)) n LA(EK).

(L3) Since E(B) < (E(B) U E(K)) by (L3) above we get
L2(E(PB)) € LA(E(P) U E(K)) — — — (1). And since

E(K) € (E(B) U E(K)) by (L3) above we get LA (E(K)) S
L2(E(PB) U E(K)) — — — (2). From (1) and (2) we have
L2(E(P)) U LA(E(K)) € LA(E(P) U E(K)).

(12) Lete € L2(E(B)) = e € E(¥) and 3 i incidence on e
such that AVE(®) € E(P) = AVER) n [ERZ) — E(B)] =0
= e ¢ U2(E(®) — E(B)) = e € E®) — UZ(E(®) -
E()), thus L3 (E(P)) € E(§) — UZ(E(®) — E(B)) — — -
(1).e € E(®) —UZ(E®) —E(B)) = e€cE@ande ¢
U2 (IE(E) — IE(EB)) =there exist 1 incidence on e such

that AVE(®) N [E(§) — E(B)] = @ thus 3 AVE() €

E(P) = e € LZ(E(P)), hence = E(§) — UZ(E(¥) —
E(PB)) < LL(E(P)) — — — (2). From (1) and (2) we have
LLEM®) = E®) - [UI(E® - ED)].

Proposition 2.8. (Upper 2 properties)

Let I = (V(E), E(¥)) be a generalized approximation space
and B,k < €. Then:

(U3) UZ(9) = 0.

(U3) If E(B) € E(K) ,then UZ(E(P)) < UZ(E(K)).

(U3) UZ(E(PB) N E(K)) € UZ(E(PB)) N UZ(E(K)).

(U3) UZ(E(PB)) U UZ(E(RK)) < UZ(E(B)UE(K)).

(U) UZ(E(B)) = E(®) — [L3(E(®) — E(B))].

Proof:

(U2) Clear from definition (2.1.(3)).

(U2) Let E(P) € E(R) and e € UZ(E(B)) = e €

E(€) where 1 incidence on e for all AVE(®) N E(B) # @ and
since E(*B) <€ E(K) then AVE(®) N E(R) # @ thus e €
UZ(E(K)) and thus UZ(E()) < U2(E(K)).

(U2) Since (E(B) N E(K)) S E(P) by (U2) above we get
UZ(E(B) NE(K)) € U2(E(P)) — — — (1). And since
(E(B) N E(R)) < E(K) by (U2) above we get UZ(E(B) N
E(K)) € UZ(E(RK)) — — — (2). From (1) and (2) we have
UZ(E(P) NEK) < UZ(E(B)) n UZ(E®).

(U2) since E(B) < (E(P)UE(K)) by (UZ) above we get
U2(E(P)) < U2(E(P)UE(K)) — — — (1). And since
E(k) € (E(B)UE(K)) by (U3) above we get UZ(E(K)) €
U2(E(P)UE(K)) — — — (2). From (1) and (2) we

have UZ(E(B)) U U2(E(K)) € U2(E(PB) U E(K)).

(U2) By Lower ? properties (L2) LZ(E(P)) = E(¥) —
[U2(E®) — E(B))] = E®) — LA(E(P)) = E(¥) —
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(E®) - [UZ(E®) — E(B)]) = UVZ(E® - EMB)) =
E(¥) — L2(E(B)). Now we replace E(E) — E(B) for E(P)
we get UZ(E(B)) = E(¥) — LA(E(®) — E(B)).

Remark 2.9. The following relations L (E(B)) € E(B),
L3(9) = @, E(P) < UL(E(P)) and UF(E(¥)) = E(¥). Are
always satisfied in first approximation operators but are not
necessarily satisfied in second approximation operators. The
following example will illustrate this.

Example 2.10. In example (2.5) let's take E(B) = {e;, e5}
and L2(E(B)) = {e,, e4, e5} thus we note that L2(E(P)) &
E($), and let's take E(P) = {e,, e,, 5} and UZ(E(P)) =
{e1, e5} thus E(B) & UZ(E(B)). Now, let's clarify L3(0) #
@ we take & = S, is star graph and let B = @ is sub graph of
€ then for all e € E(Z) there exist i incidence on e such that
NINVE(®) < E(B) this means there exist AVE(1) ©

E(B) thus L2(@) = E(E). And let's clarify U2(E(E)) #
E(&) we take & = S, is star graph for all e € E(E) where i
incidence on e there exist AVE(i) N E(B) = @ such that
AVE(i) = NINVE() thus U2(E(¥)) = 0.

Proposition 2.10. Let I = (V(%), E(%)) be a generalized
approximation space and B, K < &. Then:

(1) NEGZ(9) = E(¥).

(2) NEG2(E()) n NEGZ(E(K)) = NEGZ(E(B) n E(K)).
(3) NEG2(E(P)UE(K)) = NEGZ(E(B)) U NEGZ(E(K)).
(4) Bd2(p) = @.

Proof:

(1) By definition (2.2.(3)) we get NEGL(®) = E(§) —
U2(@) and from Upper 2 properties (U?) we get NEGL(@) =
E(®).

(2) Lete € [NEG2(E(PB)) n NEGZ(E(K))]

= e € NEG2(E(PB)) Ae € NEGZ(E(K)) = e ¢
UZ(E()) A e ¢ UZ(E(K))

= there exist t incidence on e such that AVE(®) N E(B) = @
and AVE(®) N E(K) = 9, since (E(B) N E(K)) € E(B) =
AVE(®) n (E(P) N E(K)) = @, hence e & U2(E(P) N
E(K)) = e € NEG2(E(P) n E(K)), thus

NEGZ(E(®B)) n NEGZ(E(K)) & NEGZ(E(B) N E(K)).
(3) Let e € NEG2(E(P)UE(K)) = e ¢ UZ(E(B)UE(K))
= there exist t incidence on e such that AVE(i) N
(E(BUE(K)) = @, since E(P) < (E(B)UEK)) =
AVEG) NE(P) =0 = e ¢ U2(E(P)) = e€
NEGZ(E(®)), since E(K) € (E(B)UE(K)) =

AVE@®) NE(K) =0 = e ¢ UZ(E(K)) =

e € NEGZ(E(K)).Thus e € NEG2(E())U NEGZ(E(K)).
So, NEG2(E(P)UE(K)) = NEG2(E(P)) U NEGZ(E(K)).
(4) Since Bd2(@) = U2(@) — L2(@) from Upper?
properties (U2) we get Bd1(@) = @.

Proposition 2.11. Let I = (V(¥), E(%)) be a generalized
approximation space, if I induced of antisymmetric graph &
and B,K < & Then:

(1) LA(E(B)) = E(P) or LZ(E(B)) = E() when E(P) =
E(®) — {e}.

(2) UZ(E(B)) < E(P).

(3) LA(EGB)) = 13 (L3(ECH)))-

(4) UZ(E(B)) = UZ(UZ(E(B))).

(5) UZ(E(B)) < LA(E(P)).

(6) BAZ(E(B)) = 0.

(7) BAZ(E(B)) = BdZ(BdZ(E(B))).

(8) BAZ(E(B)) < E(P).

(9) BdZ(E(P)) n Bd3i(E(K)) = BdZ(E(B) N E(K)).

(10) Bd2(E(B)) U BdZ(E(k)) = BA2(E(B)UE(K)).
Proof:

Let & be an antisymmetric graph and B, K < &:

(1) When E($) # E(¥) — {e} to prove that L2(E(p)) =
E(B). Lete € E(P) and e ¢ LZ(E(P)) = V AVEGR) &
E(B) where i incidence on e and this contradiction, since
forall e € E(B) = INVEQR) = {e} € E(*B) because € is
antisymmetric and thus e € L2(E(B)) = E(P)
LA(E(B)) — — — (D).

Lete € LZ(E($)) = JAVE(H) < E(P) where i incidence
on e since E(B) # E(¥) — {e} so AVE(i) = INVE(}) = {e}
thus e € E(B) = LZ(E(P)) € E(B) — — — (2). From (1)
and (2) we have L2(E($)) = E(PB).When E(P) = E(Z) —
{e}. Let e € E(Z), either e € E(B) then INVE(3) = {e} <
E($B) where i incidence on e thus e € L(E(P)). Or e &
E(B) so e = e then NINVE(i*) € E(B) such that *
incidence on e thus e € L2(EE($)). Hence E(§) < LA(E(B))
and L3 (E(B)) € E(¥). So L3 (E(B)) = E(3).

(2) Lete € UZ(E(B)) and e & E(B) = V AVE(D) n

E(B) + @ where i incidence on e, since € is antisymmetric
graph then INVE(i) = {e } and since e ¢ E(*3) hence
INVE(®) N E(B) = @ let's take AVE(i) = INVE(%) thus
AVE®) N E(B) = @ this contradiction. Thus if ¢ €
UZ(E(P)) must e € E(B) = UZ(E(P)) < E(P).

(3) When E($) # E(%) — {e} by (1) above LZ(E(P)) =
E(B) and by Lower2 properties (L3) we get

1% (L2(E(B))) = LA(ECP)), and when E(P) = E(E) — {e}
by (1) above LZ(E(PB)) = E(¥) — — — (1) and by Lower?
properties (L3), so L2 (Lﬁ(lE(SB))) =12(E®)---(2)
from Lower? properties (L) then L2(E(%)) = E(E) in (2) we
get L2 (Lé(lE(ﬁB))) = E() in (1) we have L3 (Lﬁ(IE(‘B))) =
LA(E(B)).

(4) By (2) above we get UZ(E(B)) € E(B) and by using
Upper2 properties (U2) we get U2 (U§ (]E(iB))) c
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U2(E(P)) — — — (1). Now to prove UZ(E(B)) <

U2 (UZ(E(P)))- Let e € UZ(E(P)) =

VvV AVE(1) N E(B) # @ where i incidence on e, since
U2(E(P)) S E(B) = V AVEG) NUZ(E(B)) # @ = e€
U2 (U2(E()))- Thus UZ(E(B)) < U3 (UZ(E(P))) — - —
(2). From (1) and (2) we have U2(E(B)) =
UZ(UZ(E(D))).

(5) By (2) above we get UZ(E(B)) € E(B) and by (1)
above we get E(PB) = L4(E(B)) and hence UZ(E(P)) <
LZ(E(P)).

(6) Suppose that Bd2(E(P)) # @ = 3 e € BA2(E(B)) =
e € U2(E(P)) Ae ¢ L2(E(B)), since e € UZ(E(P)) =
VAVE®) N E(PB) # @ where i incidence on e, so

INVE(#) N E(B) # @ and INVE(@i) = {e} because & is
antisymmetric graph thus e € E(B) by (1) above this
contradiction with e & L3(EE($)). Hence Bd2(E()) = 9.
The proof of paragraphs (7), (8), (9) and (10) can be
derived directly from (6).

Proposition 2.12. Let I = (V(%), E(§)) be a generalized
approximation space, if I induced of antisymmetric graph &
then for each P < & is (P-exact).

Proof: Let & be an antisymmetric graph and B < &. By
proposition (2.10(6)) we get Bd2(E(B)) = ¢ =
|BAZ(E(B))| = 0 and by definition (2.3) we get

2 _ 4 BdiE®)| _, o _ i
fa(E(B)) =1 R thus PB-exact.

Proposition 2.13. Let I' = (V(¥), E(¥)) be a generalized
approximation space, if I' induced of star graph € and 3, K <
€. Then:

(1) LA(E(B)) = E(®).

(2) UZ(E(P)) = 0.

(3) BA;(E()) = .

(4) NEG3(E(B)) = E(?).

(5) BAZ(E(B)) = Bd3(BdZ(E(B))).

(6) Bd;(E(B)) S E(B).

(7) BA2(E(B)) n Bd2(E(K)) = Bd2(E(P) N E(K)).
(8) BA2(E(B)) U BdZ(E(K)) = BA3(E(B)UE(K)).
(9) NEG3(E()) = NEG2(NEGZ(E(B))).

(10) NEGZ(E(B)) n NEG2(E(K)) = NEGZ(E(B) n
E(K)).

(11) NEGZ(E(B)) U NEG2(E(K)) = NEGZ(E(B)UE(K)).
(12) LA(E(D)) = 12 (13 (EP)))-

(13) E(P) < 12 (VZ(E(P)))-

(14) LA(E(B) UE(R)) = L3(E(B)) U LA(E(K)).
(15) U(BCP)) = U2 (V(ECH)))

(16) U2 (1A (E()) ) € E(P).

(17) UZ(E(PB) U E(K)) = UZ(E(PB)) U UZ(E(K)).
Proof:
Let & be a star graph and 8,k < &:

(1) Since & is star then V e € E(&) and i incidence on e we
have NINVE(#) = ¢ and NINVE(i) € E($8) = 3 AVE(®®)
such that AVE(i) € E(B) = e € L3(E(P)), thus forall e €
E(E) we get e € L(E(B)). Hence L2(E(B)) = E(¥).

(2) Since & is star then V e € E(&) and i incidence on e we
have NINVE(i) = @ and NINVEG) NE(B) = ¢ =

J AVE() suchthat AVER) NE(B) =0 = e ¢

UZ(E()) thus for all e € E(Z) we get e & UZ(E(P)).
Hence UZ(E(D)) = @.

(3) Since BA2(E(B)) = UZ(E()) — LA(E(P)) and by (1),
(2) above we get Bd2(E(B)) = 0.

(4) Since NEGZ(E(B)) = E(E) — U2(E($)) and by (2)
above we get NEGZ(E(B)) = E(¥).
The proof of paragraphs (5), (6), (7), (8) (9), (10), and
(11) can be derived directly from (3) and (4). And the proof
of paragraphs (12), (13), (14), (15) (16) and (17) can be
derived directly from (1) and (2).
Proposition 2.14. Let I = (V(§), E()) be a generalized
approximation space, if I' induced of star graph € then for all
B < T is (P-exact).
Proof: Let € be a star graph and ¢ € &. By
proposition(4.2.12) we get BA2(E(B)) = ¢ =
|BAZ(E(B))| = 0 and by definition (2.3) we have

Bd3(E(P) 0
PEDB) =1- % =1- ol 1 thus PB-exact.
We will provide a practical real-life example and calculate
the accuracy using operators L2 and U2.

If the vertices in the graph represent cities and the edges
represent the roads connecting these cities, with traffic
congestion on these roads depending on the number of cities
and the roads linking them, the practical objective of this
study is to assess the extent of traffic congestion within the
sub graph H. This approach is grounded in real-world
applications, where managing traffic flow is critical to urban
planning and efficiency. When accuracy is high, it indicates
a high or good state of traffic flow. This occurs because an
increase in the number of edges and a decrease in the
number of vertices in H lead to a rise in the elements of
La(H), which in turn reduces Bda(H) and increases the
accuracy fa(H). Conversely, when the number of vertices is
high and the number of edges is low in H, La(H) decreases,
causing Bda(H) to increase and fa(H) to decline. This
aligns with real-world road networks: when the number of
cities (vertices) is low and the number of roads (edges) is
high, traffic flow improves. In contrast, a high number of
cities with few roads leads to traffic congestion. This
practical framework provides a vital solution to a key issue
faced by urban planners: optimizing road networks to reduce
congestion and enhance the efficiency of transportation
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systems. The reason La(H) increases when edges increase
and vertices decrease is,

L2(E(B)): denotes the increase in the number of roads in B,
as per the definition e € L2(E()) then there exist i
incidence on e such that INVE(i) € E($), thus L2(E(B))
it's concerned with the number of roads in .

L%,(]E(‘B)): represents the decrease in the number of cities in
B, because e € L2 (EE(P)) there exist i incidence on e such
that NINVE(3) € E(P) and this means i ¢ V(B), thus

L2 (E()) it's concerned with the number of cities in .

L2(E($)): indicates a high number of roads in B and a low
number of cities, since L3 (E(B)) = L2(E(B)) U LA(E(B))
thus L2 (EE(B)) it's concerned with the number of roads and
cities in B.

Therefore, as L2 (E(B)) increases, Bd2(E(%B)) decreases,
leading to an improvement in the accuracy of . When the
accuracy increases, this indicates that traffic congestion in B
is minimal, and conversely, lower accuracy signals greater
congestion. This provides a practical and scientifically
precise application for addressing traffic congestion
problems, offering a clear and effective solution to enhance
urban mobility.

Example 2.15. Let & = (V(¥),E(¥)) be a network of cities,
and V(&) = {1, 1,, 13, 14, 15, 1} represents the set of cities, and

e; = (1), e = (i,16), e3 = (i, 14),
IE(E) = e4- = (iZ'iS)' ¢ 5 = (i3'i5) )
(2 6 = (iS’iG)’e7 = (i1.i5)

represents the set of roads connecting the cities in V(¥).

Figure 2.2: graph§ given in example (2.15)

Then the incidence vertex edges systems are given by :
INVES(iy) = {{e 1,€2,€ 7}}' INVES(i;) = {{e ¢3¢ 4}},
INVES(i3) = {{e 5.€ 6}}1 INVES(i,) = {{e 3}},

INVES(i5) = {{e 4, €5, ¢ 7}}, INVES(is) = {{e 2, e 6}}. And
the non-incidence vertex edges systems are given by:

NINVES(i;) = {{e3,e4,¢5 ¢ 4}}, NINVES(i;) =

{{fe e5e6e73}, NINVES(i3) = {{e g, e2,e3,e4,e7}},
NINVES(i,) = {{e1,e2,¢4,¢6.¢7}},

NINVES(is) = {{e 1,e2,e3,¢6}},

NINVES(is) = {{e1,€3,e4,€5.¢7}}.

Also, we have the admixture vertex edges systems are given
by:AVES(i;) = {{e 1,e ¢ 7, ), {es,e4,¢5.¢4}},
AVES(i,) = {{e ,e3,e 4}, {e,e5.¢4¢7}},

AVES(i3) = {{es, el {e e e3,4,¢7}),

AVES(iy) = {{es},{e ez eq4 673}

AVES(is) = {{e s e5,¢ 7}, {e 1, e 5, e3¢ 6}),

AVES(is) = {{e s, el {eq,e3,e4e5¢43}

The objective of this practical example is to select specific
cities from & and determine a sub network of roads that

provides the best traffic flow between these cities. This is
achieved by calculating the accuracy.
Let the selected cities be V(B;) = {iy, 12, 14, 15, 16}
If we choose the set of roads connecting these cities, it's
E(B,) = {e ,, ¢ 3, ¢ ,} then second lower of B, given by:
L} (E(B) = {e 3}, L2(E(PB,)) = @ and LA(E(B,)) =
{e 3}. The second upper of B, given by: UZ(E(B,)) =
{eezese,e5) U121(IE(SB1)) = E(§) and U (E($1)) =
{e 1,€2,€3,€4,€ 7}! thus Bdlz([E(s:Bl)) = {e 1,€2,€4,¢€ 7}1
Bdfx(IE(iBﬂ) = E(§) and Bdﬁ(E(‘BJ) ={e, ez ey},

3 3
so ff (E(B1)) =, fA(E(B1)) = 0and f2(E(P,) = 7.

3

such that f2(E(B,)) = - this indicates that the number of

roads is low compared to the number of cities, f2(E($B,)) =
0 this indicates that the number of cities is high compared to
the number of roads. And f2(E(%B,)) = gthis indicates a low
number of roads and a high number of cities, which means
there is traffic congestion in the flow through the roads of
B, connecting the citiesV(B;). To improve traffic flow in
V(B;), accuracy must be enhanced by adding new
connecting roads. If we choose the set of roads E(B,) =

{e 1,5, ¢35, ¢, ¢} then second lower of B, given

by: L%(]E(ng)) ={ep,ezeze e} L%(E(SBz)) =

{es, e} and LZ(E(B,)) = E(%). The second upper of B,
given by: U? (IE(SBz)) ={ej,ee3,e,,e,} Urzn(IE(sBz)) =
E(¥) and UZ(E(B,)) = {e 1, e e3¢, ¢} thus

Bd? (IE(SBZ)) =0, Bdi(£($2)) ={e;,e,e3,e,e,}, and
BA2(E(%$,)) = @, s0 f2(E($,)) = 1, A(E(P,)) = Zand
2(E($B,)) = 1.such that f?(E(,)) = 1 this indicates a
high or suitable number of roads compared to the cities,
2(E(B,)) = gthis indicates a low or suitable number of
cities compared to the roads. And f2(E($,)) = 1 this
indicates an optimal road-to-city ratio, ensuring excellent

traffic flow if these edges E(*B,) are chosen to connect the
citiesV(B;).
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