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Introduction: 

In 1966 by Y .Imai and K.Iseki introduce𝔢�d the notion of BCKalgebra[12], In 1998, Y. Ɓ. Juṉ, E. H. Roǥh and H. S. Kἱm 

introduce𝔢�d the notion of a BH- 𝔞�lg𝔢�br𝔞�, and the notion of ideal of a BH- 𝔞�lg𝔢�br𝔞�[12]. In 2022, T.Bantaojai and  et. cl.  

introduce𝔢�d the notion of a BD-algebra [1,12]. In this paper, we define the concepts of pseudo BD-algebra and  bounded pseudo 

BD-algebra. Also, we give some theorems and relationships among them are debated. 

1. BD-algebra 

In this part, we introduce the definition of BD-algebra and study some of proposition about it. 

Definition 1.1[1.12]. 

A BD-algebra (BD-A) is a non-empty set 𝜁 with a constant 𝜊 and a binary “ ⋄�” satisfying the following axioms hold ∀𝜀, 𝜂 ∈ 𝜁, if  :  
(1)�𝜀 ⋄ �𝜊 = 𝜀�, ∀𝜀 ∈ 𝜁, 

(2)(𝜀 ⋄ �𝜂) = 𝜊�𝑎𝑛𝑑�𝜂 ⋄ �𝜀 = 𝜊�, 𝑡ℎ𝑒𝑛�𝜀 = 𝜂�. 
Remark 1.2[1.12]. 

A BD-A can be (partially) order  by 𝜀 ≤ 𝜂 if and only if (𝜀 ⋄ �𝜂) = 0�, ∀𝜀, 𝜂 ∈ 𝜁. 

Proposition 1.3[1.12]. 

In any BD-A (𝜁;⋄, 𝜊), the following hold: ∀𝜀, 𝜂�, 𝜄, 𝜅 ∈ 𝜁 

(1)�𝜀 ⋄ 𝜀 = 𝜊 ,  

(2)�𝜀 ⋄ 𝜊 = 𝜀�, 
(3)(𝜀 ⋄ 𝜂) ⋄ 𝜄 = (𝜀 ⋄ 𝜄) ⋄ 𝜂�, 
(4)(𝜀 ⋄ 𝜂) ⋄ (𝜄 ⋄ 𝑢) = (𝜀 ⋄ 𝜄) ⋄ (𝜂 ⋄ 𝜅)�, 
(5) (𝜀 ⋄ (𝜀 ⋄ 𝜂)) ⋄ 𝜂 = 𝜊, 
(6)�(𝜀 ⋄ � (𝜀 ⋄ 𝜄) ⋄ 𝜂) � ⋄ 𝜂 = 𝜊, 
Remark 1.4[1.12]. 
Let (𝜁;⋄, 𝜊)  be a BD-A, then 

(1) If 𝜀 ≤ 𝜊, ∀𝜀 ∈ 𝜁, then 𝜁 contains only  . 

(2) If 𝜀 ≤ 𝜂, then 𝜀 ∗ (𝜀 ∗ (𝜀 ∗ 𝜂)) = 𝜊, ∀𝜀, 𝜂 ∈ 𝜁. 

(3) If 𝜀 ≤ 𝜂� such that 𝜀 ∗ 𝜄 ≤ 𝜂,� then 𝜊 ≤ 𝜄, ∀𝜀, 𝜂, 𝜄 ∈ 𝜁. 
Definition 1.5[13]. 

           If (𝜁;⋄, 𝜊) is a BD-A, we call 𝜁 is  Bo if there is an element 𝑒 ∈ ζ satisfying 𝜀 ≤ 𝑒.�for all 𝜀 ∈
𝜁,�then 𝑒�is called a unit�(Un)�of�𝜁. 
Remark 1.6[13]. 

In a  bounded ( Bo )  Bo BD-A (𝜁;⋄, 𝜊)  with Un e denoted 𝑒 ⋄ 𝜀� by 𝜀∗, for all 𝜀 ∈ 𝜁. 
Example 1.7[2].Let 𝜁 = {0,1,2,3} be a set with following table: 

3 2 1 0 ⋄ 
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Therefore (𝜁;⋄, 𝜊) is a BD-A. Notice that 𝜁 is  Bo with Un 3. 

Remark 1.8[13]. 

The Un in  Bo BD-A is not an unique and the following example shows this. 

Example 1.9[13]. 

Consider the following BD-A 𝜁 = {0,1,2}, with the following table: 

 

 

 

 

 

 

Notice that (𝜁;⋄, 𝜊) is  Bo with two Uns 1,2. 

Remark 1.10. 

In BD-A, we will study the  Bo with one Un only. 

Proposition 1.11[13]. 

In  Bo BD-A, (𝜁;⋄, 𝜊)�, ∃�𝜀, 𝜂 ∈ 𝜁,�the following are hold:     

(1) 𝑒∗ = 𝜊, 𝜊∗ = 𝑒 
(2) 𝜀∗ ⋄ 𝜂 = 𝜂∗ ⋄ 𝜀 
(3) 𝜊 ⋄ 𝜂 = 𝜊 

(4)�𝑒∗ ⋄ 𝜀 = ο 

(5) 𝜀∗∗ ≤ 𝜀.  
 

2.  Bounded Involutory BD-algebra 

Definition 2.1. 

For a  Bo BD-A (𝜁;⋄, 𝜊)), if an element 𝑥 satisfies (𝜀∗)∗ = 𝜀, then 𝜁 is called an involution ( Inv ). If every element of 𝜁 is an Inv , 

we call 𝜁 that is an involutory BD-A. 

Example 2.2. 

          Let 𝜁 = {0,1,2,3,4} be a set with following table: 

 

 

 

 

 

 

 

 

 

Then (𝜁;⋄, 𝜊)  is a  Bo BD-A with Un 3, and 𝜁 is an Inv. 

Proposition 2.3. 

In  Bo involutory BD-A, for 𝜀, 𝜂 ∈ 𝜁, the following is hold 𝜀∗ ≤ 𝜀∗∗∗.� 
Proof: 

𝜀∗ ⋄ 𝜀∗∗∗ = (𝑒 ⋄ 𝜀) ⋄ (𝑒 ⋄ 𝜀∗∗), from Proposition 1.3(4), we will get 

𝜀∗ ⋄ 𝜀∗∗∗ = (𝑒 ⋄ (𝑒 ⋄ 𝜀∗∗)) ⋄ 𝜀 = (𝑒 ⋄ (𝑒 ⋄ 𝜀)) ⋄ 𝜀), since 𝜁 is an Inv, thus 𝜀∗ ⋄ 𝜀∗∗∗ = (𝑒 ⋄ 𝜀) ⋄ (𝑒 ⋄ 𝜀)) = 𝜀∗ ⋄ 𝜀∗ = 𝜊.∎ 

Proposition 2.4. 

Let (𝜁;⋄, 𝜊) is a  Bo BD-A,�∃��𝜀, 𝜂 ∈ 𝜁,then the following condition are equivalent:  

(1) 𝜁  is Inv;  

(2) 𝜀 ⋄ 𝜂 = 𝜂∗ ⋄ 𝜀∗; 
(3)𝜀 ⋄ 𝜂∗ = 𝜂 ⋄ 𝜀∗; 

0 0 0 0 0 

0 0 0 1 1 

0 0 0 2 2 

0 3 3 3 3 

2 1 0 ⋄ 

0 0 0 0 

0 0 1 1 

0 0 2 2 

4 3 2 1 0 ⋄ 

0 0 0 0 0 0 

0 0 1 0 1 1 

0 0 0 2 2 2 

4 0 1 2 3 3 

0 0 0 0 4 4 
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(4)�if�𝜀 ≤ 𝜂∗then�𝜂 ≤ 𝜀∗. 
Proof: 

(1)⇒(2) Since 𝑋involutory, we have 𝜀∗∗ = 𝜀, ∀�𝜀� ∈ 𝜁,�by Proposition 1.3(7). Implies that 𝜀 ⋄ 𝜂 = 𝜀∗∗ ⋄ 𝜂 = 𝜂∗ ⋄ 𝜀∗. gives 

(2)⇒(3) By (2),�𝜀 ⋄ 𝜂∗ = 𝜂∗∗ ⋄ 𝜀∗and�𝜂 ⋄ 𝜀∗ = 𝜀∗∗ ⋄ 𝜂∗,�also By Proposition 1.11 (2), 𝜂∗∗ ⋄ 𝜀∗ = 𝜀∗∗ ⋄ 𝜂∗, therefore 𝜀 ⋄ 𝜂∗ = 𝜂 ⋄ 𝜀∗; 
(3)⇒(4) If 𝜀 ≤ 𝜂∗, then�𝜀 ⋄ 𝜂∗ = 𝜊. so�𝜀 ⋄ 𝜂∗ = 𝜊�by(3),�therefore 𝜂 ≤ 𝜀∗ 
(3)⇒(4), by Proposition1.11(5), we have 𝜀∗∗ ≤ 𝜀. Also it is clear that 𝜀∗ ≤ 𝜀∗, then�(4) gives�𝜀 ≤ 𝜀∗∗,�comparison gives �𝜀∗∗ =
𝜀, ∀𝜀 ∈ 𝜁, therefore �𝜁 is an Inv. ∎ 

Remark 2.5. 
The following show that every BD-A can be extension to  Bo BD-A 

Theorem 2.6. 

Let (𝜁;⋄, 𝜊) be BD-A and 𝑒 ∉ 𝑋.We defined the operation ∗′ on  

𝑋̅ = 𝜁 ∪ {𝑒}as follows �����𝑥 ⋄′ 𝑦 = {

𝑥 ⋄ 𝑦��������������������if 𝜀, 𝜂 ∈ 𝜁���������������������
0���������������������������if 𝜀 ∈ 𝜁�and 𝜂 = 𝑒�����
𝑒���������������������������if 𝜀 = 𝑒�and 𝜂 ∈ 𝜁�����
0����������������������������if 𝜀 = 𝜂 = 𝑒�����������������

 

Then (𝑋̅,∗′, 0) is a  Bo BD-A with Un e, and it is called the Iseki's extension  ( Is-ex )of (𝜁;⋄, 𝜊). 
Proof: 

Let 𝜀, 𝜂 ∈ 𝑋̅, since 𝜁 is BD-A, keep to prove 𝜁 ∪ {𝑒} is BD-A 

(1) 𝑒 ⋄ 𝜊 = 𝑒��if 𝜀 = 𝑒, 𝜂 = 𝜊 ∈ 𝜁 

(2) (𝑒 ⋄ 𝜀) ⋄ 𝜂 = 0�𝑎𝑛𝑑�𝜂 ⋄ (𝑒 ⋄ 𝜀) = 0 ⇒� (𝑒 ⋄ 𝜂) ⋄ 𝜀 = 0�𝑎𝑛𝑑�𝑒 ⋄ (𝜂 ⋄ 𝜀) = 0 ⇒ 𝑒 ⋄ (𝜀 ⋄ 𝜂) = 0�𝑎𝑛𝑑�𝑒 ⋄ (𝜂 ⋄ 𝜀) = 0� ⇒ 𝜀 = 𝜂, 

this show that (𝑋̅,∗′, 0) is BD-A . It is clear that e is Un of 𝑋̅. ∎ 

Proposition 2.7. 

Let (𝜁;⋄, 𝜊) be a BD-A and 𝑋̅ be the Is-ex of 𝜁. Then 𝜀∗ = 𝜊 or 𝜀∗ = 𝑒,� ∀ 𝑥 ∈ 𝑋̅.  

Proof: The proof is clear by Theorem 2.6. ∎ 

 

3. Pseudo BD-algebra 

          In this part, we introduce definitions of Ps  BD-A,  Bo BD-A and some of their properties. 

Definition 3.1 

A pseudo ( Ps )BD-A (𝜁;⋄, 𝜊) is anon empty set with a constant 0 and two binary operations ⋄ and # satisfying the following, ∃ 

𝜀, 𝜂, 𝜄 ∈ 𝜁 

(1) 𝜀 ⋄ 𝜊 = 𝜀�#𝜊 = 𝜀 

(2) (𝜀 ⋄ 𝜂) = 𝜊�, (𝜀#𝜂) = 𝜊 𝑎𝑛𝑑 (𝜂 ⋄ 𝜀) = 0�, (𝜂�#�𝜀) = 0 implies 𝜀 = 𝜂. 

Remark 3.2. 

In Ps  BD-A (𝜁,⋄, #, 𝜊), we can define a binary operation ≤ by 𝜀 ≤ 𝜂 if and only if , 𝜀 ⋄ 𝜂 = 𝜊 and 𝜀�#�𝜂 = 0,  ∀ 𝜀, 𝜂 ∈ 𝜁. 

Remark 3.3. 

 Every BD-A (𝜁,⋄, 𝜊) is a Ps  BD-A (𝜁,⋄, #, 𝜊) in a natural way. But the converse is not true as shown in the following example: 

Example 3.4. 

 Let 𝜁 = {0,1,2,3} be a set with the following tables: 

 

 

 

 

 

 

Then (𝜁,⋄, 𝜊)  and (𝜁, #, 𝜊) are not BD-A, since 

(2 ⋄ 1) ⋄ 3 = 1 ≠ 0 = (2 ⋄ 3) ⋄ 1�and (2#1)#3 = 0 ≠ 3 = (2#3)#1. 
It is easy to check that�(𝜁,⋄, #, 𝜊) is a Ps  BD-A . 

Proposition 3.5. 

Let (𝜁,⋄, #, 𝜊) be a Ps  BD-A. Then the following hold: for all 𝜀, 𝜂, 𝜄� ∈ �𝜁.  

1- 𝜀� ⋄ � (𝜀�#�𝜂) �≤ 𝜂, 𝜀�#�(𝜀� ⋄ �𝜂) �≤ 𝜂,  

2-  𝜀� ⋄ �𝜂� ≤ 𝜄� ⇔ �𝜀�#�𝜄� ≤ �𝜂,  

3- 𝜊� ⋄ � (𝜀� ⋄ �𝜂) �= � (𝜊�#�𝜀)�#(𝜊� ⋄ �𝜂),  
4- 𝜊�#�(𝜀�#�𝜂) �= � (𝜊� ⋄ �𝜀) �⋄ � (𝜊�#�𝜂),  
5- 𝜊� ⋄ �𝜀� = �𝜊�#�𝜀.  

Proof. 

 1-  We obtain [𝜀� ⋄ � (𝜀�#�𝜂)]�#�𝜂 = � (𝜀�#�𝜂) �⋄ � (𝜀�#𝜂) �= �𝜊 and [𝜀�#�(𝜀� ⋄ �𝜂)] �⋄ �𝜂� = � (𝜀� ⋄ �𝜂)�#(𝜀� ⋄ �𝜂) �= �0.  

3 2 1 0 #  3 2 1 0 * 

0 0 0 0 0  0 0 0 0 0 

0 0 0 1 1  0 0 0 1 1 

3 0 3 2 2  1 0 2 2 2 

0 0 3 3 3  0 0 3 3 3 
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    Hence 𝜀� ⋄ � (𝜀�#�𝜂) �≤ �𝜂����𝑎𝑛𝑑���𝜀 ∗ �(𝜀�#�𝜂) �≤ �𝜂.  

2−��𝜀� ⋄ 𝜂� ≤ �𝜄 ⇔ (𝜀� ⋄ �𝜂)�#�𝜄 = 𝜊� ⇔ � (𝜀�#�𝜄) � ⋄ �𝜂 = 𝜊� ⇔ �𝜀�#�𝜄� ≤ �𝜂.  
(3) and (4) , For any 𝜀, 𝜂� ∈ �𝜁, we have  

(𝜊�#𝜀)#�(𝜊� ⋄ �𝜂) = [((𝜀� ⋄ �𝜂) ⋄ �(𝜀� ⋄ �𝜂))#�𝜀]#�(𝜊� ⋄ �𝜂) �= [((𝜀� ⋄ �𝜂)#�𝜀) ⋄ � (𝜀 ⋄ 𝜂)]#�(𝜊 ⋄ �𝜂)� 

= [((𝜀�#�𝜀) ⋄ �𝜂) ⋄ �(𝜀� ⋄ �𝜂)]#�(𝜊 ⋄ �𝜂) �= [(𝜊� ⋄ �𝜂)#�(𝜊� ⋄ �𝜂)] �⋄ � (𝜀� ⋄ 𝜂) �= 𝜊� ⋄ � (𝜀 ⋄ 𝜂)� 
And 

�(𝜊� ⋄ �𝜀) �⋄ � (𝜊�#𝜂) �= [((𝜀�#�𝜂) � ⋄ �(𝜀�#�𝜂)) � ⋄ �𝜀] � ⋄ �(𝜊�#�𝜂) �= [((𝜀�#�𝜂) �∗ �𝜀) �∗ �(𝜀�#�𝜂)] �⋄ � (𝜊�#�𝜂)� 
= [((𝜀� ⋄ �𝜀)#�𝜂)�#�(𝜀�#�𝜂)] � ⋄ �(𝜊�#�𝜂) �= [(𝜊�#𝜂) ⋄ � (𝜊�#�𝜂)]#�(𝜀�#�𝜂) �= 𝜊�#�(𝜀�#�𝜂). 
(5) For any 𝜀� ∈ �𝜁, we obtain  𝜊 ⋄ 𝜀 = � (𝜀�#�𝜀) ⋄ 𝜀� = � (𝜀 ⋄ 𝜀)#𝜀� = �0#𝜀. 
Definition 3.6 

A Ps  BD-A (𝜁,⋄, #, 𝜊) is said to be  Bo if there is an element 𝑒 ∈ 𝜁 satisfying 𝜀 ≤ 𝑒, ∀ 𝜀 ∈ 𝜁, i.e. 𝜀 ≤ 𝑒 ⇔ 𝜀 ⋄ 𝑒 = 𝜊 and 𝜀�#�𝑒 =
𝜊, then is called a Un of X. A Ps  BD-A with Un is called bounded. 

Remark 3.7. 

In a  Bo Ps  BD-A (𝜁,⋄, #, 𝜊), we denote 𝑒 ∗ 𝜀 and 𝑒#𝜀 by 𝜀∗ and 𝜀#, respectively, for every 𝜀 ∈ 𝜁. 
Example 3.8. 

In Example 3.4, notice that 𝜁 is  Bo Ps  BD-A with Un 2. 

Proposition 3.9. 

In  Bo Ps  BD-A (𝜁,⋄, #, 𝜊), then the following  hold,�∃𝜀, 𝜂 ∈ 𝜁: 

(1) 𝑒∗ = 𝜊 = 𝑒# 

(2) 𝜊∗ = 𝑒 = 𝜊# 

(3) 𝜀∗#𝜂 = 𝜂# ⋄ 𝜀 

(4) 𝜀∗#𝜂∗ = (𝜂∗)# ⋄ 𝜀 

(5) 𝜀# ⋄ 𝜂# = (𝜂#)∗#𝜀 

(6) 𝜊 ⋄ 𝜀 = 𝜊 = 𝜊#𝜀 

(7) 𝑒∗#𝜀 = 𝜊 = 𝑒# ⋄ 𝜀 

(8) (𝜀∗)# ≤ 𝜀, (𝜀#)∗ ≤ 𝜀. 

Proof :  

1. 𝑒∗ �= �𝑒� ⋄ �𝑒� = �𝜊� = �𝑒�#�𝑒� = � 𝑒#, 
2. 𝜊∗ �= �𝑒� ⋄ 𝜊� = �𝑒� = �𝑒�#�𝜊� = � 𝜊#�, 
3. 𝜀∗�#�𝜂� = � (𝑒� ⋄ �𝜀)�#�𝜂 = � (𝑒�#�𝜂) �⋄ �𝜀 = � 𝜂# � ⋄ 𝜀�, 
4. 𝜀∗�#�𝜂∗ =� (𝑒� ⋄ �𝜀)�#�𝜂∗ =�(𝑒�#�𝜂∗) � ⋄ �𝜀� = � (𝜂∗�)�# � ⋄ 𝜀�, 
5. 𝜀# � ⋄ �𝜂# �= � (𝑒�#𝜀) �⋄ �𝜂# =� (�𝑒� ⋄ �𝜂#�)�#�𝜀� = � (𝜂#�)∗��#�𝜀�, 
6.���𝐿𝑒𝑡�𝜀� ∈ �𝜁, 𝑡ℎ𝑒𝑛�𝜊� = � (𝜊� ⋄ �𝜀)(#)#𝑒�(�𝑠𝑖𝑛𝑐𝑒�𝑈�𝑖𝑠�𝑏𝑜𝑢𝑛𝑑𝑒𝑑�) 
��0� ⋄ �𝜀 = � (𝜊�#�𝑒) ⋄ �𝜀��𝐴𝑙𝑠𝑜, 𝜊 = � (𝜊�#�𝜀) ⋄ �𝑒�(�𝑠𝑖𝑛𝑐𝑒�𝑈�𝑖𝑠�𝑏𝑜𝑢𝑛𝑑𝑒𝑑�) 
             =� (𝜊� ⋄ �𝑒)�#�𝜀 = �𝜊�#�𝜀� 
7. 𝑒∗#�𝜀� = �𝜊�#�𝜀�(�𝑏𝑦�1�) ��= �𝜊(�𝑏𝑦�6�)  = �𝜊 ⋄ �𝜀�(�𝑏𝑦�6�)  = 𝑒# ⋄ �𝜀�(�𝑏𝑦�1�) 

8. (𝜀∗�)# �� ⋄ �𝜀 = � (𝑒�#�𝜀∗�) ⋄ �𝜀� = � (𝑒�#�(𝑒� ⋄ �𝜀)) ⋄ �𝜀� = �𝜊�. 𝐴𝑙𝑠𝑜, 

�(𝜀#�)∗��#�𝜀� = � (�𝑒� ⋄ � 𝜀#�)�#�𝜀� = � (𝑒� ⋄ � (𝑒�#�𝜀))�#�𝜀 = �𝜊. 

Future Works  

There are many avenues that one could explore. In this section, we state some of these open problems and conjectures.  

1. Studying the Fuzzy Ps  ideal of Ps  BD-A.  

2. Studying the Fuzzy complete Ps  ideal (as a generalization of fuzzy Ps  ideal) of Ps  BD-A.  

3. Studying the Fuzzy K-Ps  ideal (as a generalization of fuzzy Ps  ideal) of Ps  BD-A.  
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