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Abstract: In this paper, we introduce the notions of pseudo BD-algebra and bounded pseudo BD-algebra. Also, we give some
theorems and relationships among them are debated.
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Introduction:

In 1966 by Y .Imai and K.Iseki introducee d the notion of BCKalgebra[12], In 1998, Y. B. Jun, E. H. Rogh and H. S. Kim
introducee d the notion of a BH- a lge bra , and the notion of ideal of a BH- a Ige bra [12]. In 2022, T.Bantaojai and et. cl.
introducee d the notion of a BD-algebra [1,12]. In this paper, we define the concepts of pseudo BD-algebra and bounded pseudo
BD-algebra. Also, we give some theorems and relationships among them are debated.

1. BD-algebra
In this part, we introduce the definition of BD-algebra and study some of proposition about it.
Definition 1.1[1.12].
A BD-algebra (BD-A) is a non-empty set { with a constant o and a binary “ ¢  satisfying the following axioms hold Ve, n € ¢, if :
ee o=¢,Ve €,
(2)(eon)=o0andno e =o0,thene =n.
Remark 1.2[1.12].
A BD-A can be (partially) order by e <nifandonlyif (¢ o n) =0,ve,n €.
Proposition 1.3[1.12].
In any BD-A ({;°, 0), the following hold: Ve, n,,k €
L eoe=o0,
2 eoo=c¢,
@)eomor=(g00) o,
@)(een)e(touw) =(eo)o(nok),
(B) (o (eom)on =o,
(6)(eo (go)om) o =o,
Remark 1.4[1.12].
Let ({;,0) be a BD-A, then
(1) If e < 0,Ve € (, then  contains only .
() Ife <n,thenex(ex(e*xn)) =o0,Ven € L.
(3) Ife <7 suchthat e x 1 <7, theno <, Ve, n,L € (.
Definition 1.5[13].
If (¢;0,0) isaBD-A, we call ¢ is Bo if there is an element e € {satisfying € < e.forall € €
¢, then e is called a unit (Un) of {.
Remark 1.6[13].
Ina bounded (Bo) Bo BD-A ({;,0) with Une denoted e o ¢ by ¢*, forall € € ¢.
Example 1.7[2].Let { = {0,1,2,3} be a set with following table:
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Therefore ({;¢,0) is a BD-A. Notice that ¢ is Bo with Un 3.

Remark 1.8[13].

The Un in Bo BD-A is not an unique and the following example shows this.

Example 1.9[13].

Consider the following BD-A ¢ = {0,1,2}, with the following table:

Notice that ({;o,0) is Bo with two Uns 1,2.
Remark 1.10.

In BD-A, we will study the Bo with one Un only.

Proposition 1.11[13].

o |0 1 2
0 0 0 0
1 1 0 0
2 2 0 0

In Bo BD-A, ({;0,0),3 &,n € {, the following are hold:

(De*=o0,0"=¢e
(2)e"on=mn"oe

(oen=o0
@de*oe=0
(B) e <e.

2. Bounded Involutory BD-algebra
Definition 2.1.

Fora Bo BD-A ({;9,0)), if an element x satisfies (¢*)* = ¢, then ¢ is called an involution ( Inv ). If every element of { is an Inv,

we call ¢ that is an involutory BD-A.
Example 2.2.

Let ¢ = {0,1,2,3,4} be a set with following table:

WIN || O

WIN (L |O|O

4

4

OININ|O|O(F
Ol |OFRr|ON
o|Oo|Oo|Oo|Oo|w

o|h~|O|O(O|~

Then ({;0,0) isa Bo BD-A with Un 3, and ¢ is an Inv.

Proposition 2.3.

In Bo involutory BD-A, for ¢,n € {, the following is hold £* < ™.

Proof:

e 0™ = (eoeg)o (eoe™), from Proposition 1.3(4), we will get

s*oe***=(eO(eoe**))os=(eO(eos))os),since(isanInv,thuss*oe***=(eoe)0(eoe))=s*oe*=o.l

Proposition 2.4.

Let ({;0,0) isa Bo BD-A, 3 ¢,n € {,then the following condition are equivalent:

(1) ¢ is Inv;
(Qeon=n"ce";
@)eon™ =noe’;
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(4)ife < n*thenn < g™,

Proof:

(1)=(2) Since Xinvolutory, we have €** = ¢,V € € {, by Proposition 1.3(7). Impliesthat e oy = £ o p = n* o £*. gives
(2=B)By(2),eon* =n"oc*andn o " = £ o n*, also By Proposition 1.11 (2), n** o £* = £** o n*, therefore e o n* =n o &%
(3)>(4) If e < n*,theneon* = 0.so e ¢on* = 0 by(3), therefore n < &*

(3)=(4), by Proposition1.11(5), we have £ < €. Also it is clear that * < ", then (4) gives ¢ < €™, comparison gives & =

g, Ve € {, therefore ¢isanInv. m

Remark 2.5.
The following show that every BD-A can be extension to Bo BD-A
Theorem 2.6.
Let ({;0,0) be BD-A and e ¢ X.We defined the operation *’ on
xoy ife,n €
X =¢u{elasfollows xo'y= (e) giiiiﬁig;g
0 ife=n=e
Then (X,+’,0) isa Bo BD-A with Un e, and it is called the Iseki's extension ( Is-ex )of (;e, 0).

Proof:

Let &, € X, since ¢ is BD-A, keep to prove { U {e} is BD-A

(l)eco=eife=en=0€(

2 (ece)on=0andno(eoe)=0=> (eon)ee=0andeo(noc)=0=eo(con)=0andeo(noe)=0 =& =rn,
this show that (X,+’,0) is BD-A . Itis clear thate isUnof X. m

Proposition 2.7.

Let (¢;0,0) be aBD-A and X be the Is-ex of {. Thene* =oore* = e, ¥V x € X.

Proof: The proof is clear by Theorem 2.6. m

3. Pseudo BD-algebra
In this part, we introduce definitions of Ps BD-A, Bo BD-A and some of their properties.

Definition 3.1

A pseudo ( Ps )BD-A ({;,0) is anon empty set with a constant 0 and two binary operations o and # satisfying the following, 3

§MLEL

Deco=cH#o=¢

2 (eon)=o0,(c#n) =o0and (noe) =0,(n # &) = 0 implies € = 1.

Remark 3.2.

InPs BD-A ({,o, #,0), we can define a binary operation < by e <nifandonlyif,eon=o0ande#n =0, Ven €.

Remark 3.3.

Every BD-A ({,0,0) isaPs BD-A ({,o, #, 0) in a natural way. But the converse is not true as shown in the following example:

Example 3.4.

Let ¢ = {0,1,2,3} be a set with the following tables: * 10 1 ]2 |3 # 10 |1 ]2 |3
0 |0 |0 |O |O 0 |0 |O |O |O
1 |1 |0 |0 |O 1 |1 |0 |0 |O
2 |2 |2 |0 |1 2 |2 |3 |0 |3
3 |3 [3 |0 |0 3 |3 |3 |0 ]0

Then (¢,o,0) and (¢, #, 0) are not BD-A, since
(201)0o3=1#0=(20¢3)c1land R#1)#3 =0 = 3 = (2#3)#1.

It is easy to check that ({,e, #,0) isaPs BD-A.

Proposition 3.5.

Let ({,o, #,0) be aPs BD-A. Then the following hold: forall €,n,t € (.
l-e o (e#tn) <ne#(ecomn) <mn

2-gon <1 © e#1L <,

3-00(eomn) = (o#e)#(o o n),

d-o#(e#n) = (0 0 ¢€) o (0#n),

5-0 0 ¢ = o#e.

Proof.

1- Weobtain[e o (e#n)]#n= (¢#n) o (¢#n) = oand[e#H (e on)] on = (e o n)#(eon) =0.
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Hencee o (e#n) < n and e* (e#n) < 1.
2—con s 1o (eomiti=0 © (e#) on=0 © e#1 < 1.

(3)and (4) , Forany ,n € ¢, we have

(o#e)# (0 om)=[((e omo (g om)#el#(0on) =[((comHe)o (com]# (o0 n)

=[(c#e)em)e (zoml#(oom) =[(0 o m#(oemlo(eom) =00 (con)

And

(00 &) o (o#n) =[((e#n) o (e#m) oe]o(o#n) =[((e#n) x &) * (e#n)] o (0#n)

=[((e o )#n)# ()] o (o#tn) =[(o#n) o (o #MI# (c#n) =o# (e#n).

(5) Forany e € {,weobtain oo = (e#e)oe = (e0¢e)He = O#e.

Definition 3.6

APs BD-A ({,o,#,0) is said to be Bo ifthereisanelemente € { satisfyinge <e,Ve€ (,ie.e<eo coe=oande#e =

o, then is called a Un of X. A Ps BD-A with Un is called bounded.

Remark 3.7.

Ina BoPs BD-A ({,o, #,0), we denote e * ¢ and e#¢ by £ and £*, respectively, for every ¢ € {.

Example 3.8.

In Example 3.4, notice that { is Bo Ps BD-A with Un 2.

Proposition 3.9.

In Bo Ps BD-A ({,¢, #,0), then the following hold, 3¢,17 € {:

De*=o0=¢e"

(2)o* =e =of

QB e#n=n*oe

(@) e#n* =M oe

(5) e* o n® = (n*)*#e

(6) 0 0 € = 0 = o#te

(MNe#te=0=e"o¢

®) (e <, (M <e.

Proof :

le* =eoce =0 =c#e = e

20 =e o0 =¢e =e#o = o,

3.et#tn = (eoce)#tn= (e#tn) o e=n" o¢g,

4e#n = (eoe)#n = (e#tn)oe= )" o,

S.efon? = (e#te) o= (eon® e = (") #e¢,

6. Lete € (,theno = (0 ¢ &)(#)#e (since U is bounded )

00oc= (o#e)o g Also,0 = (o #¢&) ¢ e (since U is bounded )

=(0oce)te=o#Hc¢

7.e’#te = o#te(byl) = o(by6) = 00 e(by6) =efo e(byl)

8.(e") oe= (e#e’)o e = (e#(e 3 e))o g = o0.Also,

() #e=(eoc)#he = (eo (e#e)#e= 0.

Future Works

There are many avenues that one could explore. In this section, we state some of these open problems and conjectures.

1. Studying the Fuzzy Ps ideal of Ps BD-A.

2. Studying the Fuzzy complete Ps ideal (as a generalization of fuzzy Ps ideal) of Ps BD-A.

3. Studying the Fuzzy K-Ps ideal (as a generalization of fuzzy Ps ideal) of Ps BD-A.
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