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Abstract—In this paper the notion of a pseudo Samarandache BD-algebra, a psҽuԁo Samarandache ideal  , a psҽudo Smarandache  

closed ideal  and  a psҽudo Samarandache completely closed ideal  of a pseudo Samarandache BD-algebra   are defined. There 

notion are stadied. The relationships among these types of Ideals are discussed.   
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    Introduction  

In 1966 by Y .Imai and K.Iseki introduce𝔢d the notion of BCKalgebra[12], In 1998, Y. Ɓ. Juṉ, E. H. Roǥh and H. S. Kἱm 

introduce𝔢d the notion of a BH- 𝔞lg𝔢br𝔞, and the notion of Id   of a BH- 𝔞lg𝔢br𝔞[12]. In 2022, T.Bantaojai and  et. cl.  introduce𝔢d 

the notion of a BD-A   [1,12]. In this paper, we define the concepts of a pseudo Smarandache  completely closed ideal  and a 

pseudo Smarandache  closed ideal  of a pseudo  Smarandache  BD-algebra. We stated and proved some theorems which determine 

the relationships between these notions and some types of a pseudo Smarandache  Ideals of a Smarandache  BD-algebra.  

 

1. Materials and Methods  

In this section, some basic concepts about a BCK-algebra, a BD-alg𝔢br𝔞, a ps𝔢udo BD-𝔞lg𝔢br𝔞, ps𝔢udo Id   and a  ps𝔢udo closed 

ideal  of a ps𝔢udo BD-𝔞lg𝔢br𝔞  are given.  

Definition 1.1[1,12]. 

A BD-algebra (BD-A)  is a non-empty set 𝜁 with a constant 𝜊 and a binary “ ⋄ ” satisfying the following axioms hold ∀𝜀, 𝜂 ∈ 𝜁, if  
:  

(1) 𝜀 ⋄  𝜊 = 𝜀 , ∀𝜀 ∈ 𝜁, 

(2)(𝜀 ⋄  𝜂) = 𝜊 𝑎𝑛𝑑 𝜂 ⋄  𝜀 = 𝜊 , 𝑡ℎ𝑒𝑛 𝜀 = 𝜂 . 
Definition 1.2[14].  

A Smarandache  ( Sm ) BD-A   is defined  to be a BD-A   (𝜁;⋄, 𝜊)  in which there exists a proper subset 𝑄 of 𝜁 such that . 

i. 𝜊 ∈ 𝑄  and | 𝑄 | ≥ 2  

ii. 𝑄 is a BD – algebra under the operation of 𝜁.  

Definition 1.3[1,12]. 

Let I be a nonempty subset of a BD-A   (𝜁;⋄, 𝜊) and 𝜆 (≠ ∅)⊆ 𝜁 .Then 𝜆 is called an ideal  (Id )of 𝜁 if it is satisfies:  

i. 𝜊 ∈  𝜆,     

ii.  𝜀 ⋄  𝜂 ∈ 𝜆  𝑎𝑛𝑑  𝜂 ∈  𝜆  𝑖𝑚𝑝𝑙𝑦   𝜀 ∈   𝜆,   ∀ 𝜀, 𝜂 ∈  𝜁. 

Definition 1.4[1,12].  

A nonempty subset 𝜆 of a Sm  BD – algebra (𝜁;⋄, 𝜊) is called a Sm  Id   of 𝜁 if:  

i. 𝜊 ∈  𝜆,     

ii.  𝜀 ⋄  𝜂 ∈ 𝜆  𝑎𝑛𝑑  𝜂 ∈  𝜆  𝑖𝑚𝑝𝑙𝑦   𝜀 ∈   𝜆,   ∀ 𝜀 ∈  𝜁. 

Proposition 1.5. Every  Id    of  a Sm  BD-A   (𝜁;⋄, 𝜊) is a Sm  Id   of 𝜁 .  

Definition 1.6. 

An Id   𝜆 of a BD-A   (𝜁;⋄, 𝜊)  is called a CId   Id   of 𝜁 if and only if 𝜊 ∗  𝜀 ∈  𝜆   𝑓𝑜𝑟 𝑎𝑙𝑙  𝜀 ∈  𝜆  
Definition 1.7. A Sm  Id   𝜆 of a Sm  BD –A (𝜁;⋄, 𝜊) is called a Sm  closed ideal  ( CId )of 𝜁 if:  𝑓𝑜𝑟 𝑎𝑙𝑙  𝜀 ∈  𝜆, 𝜊 ⋄  𝜀 ∈  𝜆  

Proposition 1.8. Every CId   Id   of  a Sm  BHalgebra (𝜁;⋄, 𝜊)is a Sm  CId   of 𝜁.  

Definition 1.9. An Id 𝜆 of a BD-A   (𝜁;⋄, 𝜊) is called a completely closed ideal  CId   of 𝜁 if it is Satisfies:  𝜀 ⋄  𝜂 ∈  𝜆, ∀ 𝜀, 𝜂 ∈  𝜆. 

Remark 1.10. Every a CCId   of BD-A   (𝜁;⋄, 𝜊) is CId  of 𝜁.  

Definition 1.11. A Sm  Id   𝜆 of a Sm  BD-A   (𝜁;⋄, 𝜊) is called a Sm  CCId   of 𝜁 if: 𝜀 ∗ 𝜂 ∈ 𝜆, ∀ 𝜀, 𝜂 ∈ 𝜆.  

Proposition 1.12. Every CCId   of  a BD-A   (𝜁;⋄, 𝜊) is a Sm  CCId   of 𝜁.  

Remarks 1.13. Every a Sm  CCId   of Sm  BD-A   (𝜁;⋄, 𝜊) is a Sm  CId   of 𝜁.  
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Definition 1.14. A pseudo  (Po ) BD-A   (𝜁;⋄, 𝜊) is anon empty set with a constant 0 and two binary operations ⋄ and # satisfying 

the following, ∃ 𝜀, 𝜂, 𝜄 ∈ 𝜁 

(1) 𝜀 ⋄ 𝜊 = 𝜀 #𝜊 = 𝜀 

(2) (𝜀 ⋄ 𝜂) = 𝜊 , (𝜀#𝜂) = 𝜊 𝑎𝑛𝑑 (𝜂 ⋄ 𝜀) = 0 , (𝜂 # 𝜀) = 0 implies 𝜀 = 𝜂. 

Definition 1.15.  

A nonempty subset 𝜆 of a Ps BD-A (𝜁,⋄, #, 𝜊) is called a Pseudo Ps Id   of 𝜁 if:  

i. 𝜊 ∈  𝜆,     

ii.  𝜀 ⋄  𝜂 , 𝜀 # 𝜂 ∈ 𝜆  𝑎𝑛𝑑  𝜂 ∈  𝜆  𝑖𝑚𝑝𝑙𝑦   𝜀 ∈   𝜆,   ∀ 𝜀, 𝜂 ∈  𝜁. 

Definition 1.16. 

A Po    Id 𝜆 of a Ps    BD-𝔞lg𝔢br𝔞 (𝜁,⋄, #, 𝜊) is called a Po CId    of 𝜁, if for every 𝜀 ∈ 𝜆,we have 𝜊 ⋄ 𝜀, 𝜊 #𝜀 ∈ 𝜆.  

Definition 1.17. 

A Po    Id 𝜆 of a Ps    BH -𝔞lg𝔢br𝔞 (𝜁,⋄, #, 𝜊) is called a Po CCId   of 𝜁, if satisfies:  𝜀 ⋄  𝜂, 𝜀 # 𝜂 ∈  𝜆, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜀, 𝜂 ∈  𝜆 . 

Remarks 1.18.  

Every a Ps CCId   of a Ps BD-A   (𝜁,⋄, #, 𝜊) is a Ps CId   of 𝜁.  

 

2. Main Results  

In this section, the concepts a Ps Sm BD-A, a pseudo Sm  Id, a Ps Sm  CIds and a pseudo Sm  compeletly CIds of a Ps Sm  BD-A   

are given.  

Definition 2.1.   

A Ps Sm  BD-A   (𝜁,⋄, #, 𝜊) is defined to be a Ps BD-A   in which there exists a proper subset 𝑄 of 𝜁 such that   

 i.𝜊 ∈  𝑄 𝑎𝑛𝑑 |𝑄|  ≥  2  

ii. Q is BD – A under the operations "⋄" and "#" of 𝜁.     

Example 2.2.  

The a  pseudo BH- algebra  𝜁 = {0,1 ,2 ,3 ,4 } with constant 0 and binary operations" ⋄" and" #" defined the following tables 

 

 
 and 𝑄={0,1,2} is a Ps Sm  BD-A  .  

   

Definition 2.3.  

Let  (𝜁,⋄, #, 𝜊) be a Ps Sm   BH-algebra  An on empty subset  𝜆 of 𝜁 is called a Ps Sm   Id   of 𝜁  related to  𝑄 (or briefly , a   Ps Sm   

Id   of 𝜁 if.  

1- 𝜊 ∈  𝜆 , 
2-  ∀ 𝜂 ∈  𝜆,   𝜀 ⋄ 𝜂 ,   𝜀 # 𝜂 ∈  𝜆 𝑖𝑚𝑝𝑙𝑦  𝜀 ∈  𝜆, ∀ 𝜀 ∈  𝑄  

 

Example 2.4.  

Consider the Ps Sm   BH- algebra   𝜁={0,1,2,3,4}  with the binary Operations "⋄"  and    " # " defined by the tables.  

  
And 𝑄={0,1,2} the subset  𝜆={0,1,3} is  a Ps Sm  Id   of 𝜁 .  

Proposition 2.5. 

Let (𝜁,⋄, #, 𝜊) be a pseudo Sm  – BD-A   .Then every a Ps Id   of 𝜁 is a Ps Sm  Id   of 𝜁 .  

Proof: It is clear  

Remark 2.6.  

The following example shows that convers of proposition is not correct in general.  

Example 2.7. 

Consider the  a Ps Sm  BD- A   𝜁={0,1,2,3}  with  binary operations "⋄" and "#"  defined by the following tables.  
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And 𝑄 ={0,1}. The subset 𝜆={0,2} is a Ps Sm   Id    of 𝜁 but it is not a Ps Id   of 𝜁 , since   3 ⋄ 2 = 2 ∈ 𝜆  𝑎𝑛𝑑 3#2 = 2 ∈ 𝜆 𝑏𝑢𝑡 3 ∉
𝜆  Theorem (2.8) 

Let (𝜁,⋄, #, 𝜊) be a Ps Sm  BD- algebra and 𝜆 be a pseudo Sm  Id   such that 𝜀 ⋄  𝜂, 𝜀 # 𝜂 ∉ 𝜆, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜀 ∉  𝜆 𝑎𝑛𝑑 𝜂 ∈  𝜆, 𝑡ℎ𝑒𝑛 𝜆 

𝑖𝑠 𝑎 Ps Id 𝑜𝑓 𝜁.  

Proof:  

Let 𝜆 be a Ps Sm  Id   of (𝜁,⋄, #, 𝜊) , 𝜀 ∈  𝜁, 𝑎𝑛𝑑 𝜂 ∈ 𝜆, 

1-  𝜊 ∈ 𝜆,  

2-   𝑙𝑒𝑡 𝜀 ∗ 𝜂, 𝜀 # 𝜂 ∈  𝜆 𝑎𝑛𝑑 𝜂 ∈ 𝜆 .  

Then we have two cases. Case 1    if 𝜀 ∈  𝑄 ⟹  𝜀 ∈  𝜆    

Case 2     if 𝜀 ∉  𝑄 , 𝑒𝑖𝑡ℎ𝑒𝑟 𝜀 ∈ 𝜆, 𝑜𝑟 𝜀 ∉  𝜆 . If 𝜀 ∈  𝜆 ⟹  𝜆 𝑖𝑠 𝑎 𝑝𝑠𝑒𝑢𝑑𝑜 𝑖𝑑𝑒𝑎𝑙if 𝜀 ∉  𝜆, ⟹ 𝜀 ⋄ 𝜂, 𝜀 # 𝜂 ∉  𝜆  

And this contradiction since 𝜀 ⋄  𝜂 , 𝜀  # 𝜂 ∈ 𝜆. Therefore , 𝜆 is a Ps Id   . 

Definition 2.9. 

A Ps Sm  Id   𝜆 of a Ps Sm  BD-A   (𝜁,⋄, #, 𝜊) is called a Ps Sm  CId of 𝜁    if   𝜊 ⋄ 𝜀 , 𝜊 # 𝜀 ∈  𝜆 , ∀𝜀 ∈  𝜆 . 
Example 2.10.  

The a Ps Sm Id    𝜆={0,1,3} of  𝜁 in example (2.4) is a Ps Sm CId of 𝜁.   

Definition 2.11.  

A Ps Sm  Id   𝜆 of a Ps Sm  BD-A   (𝜁,⋄, #, 𝜊) is called a Ps Sm  CCId of 𝜁    if   𝜀 ⋄ 𝜂 𝑎𝑛𝑑 𝜀#𝜂 ∈  𝜆 , ∀𝜀 , 𝜂 ∈ 𝜆.  

Example 2.12.  

the a Ps Sm Id    𝜆={0,4} of  𝜁 in example (2.4) is a Ps Sm CCId of 𝜁.   

Proposition 2.13.  

Let  (𝜁,⋄, #, 𝜊) is a Ps Sm  BD –A .Then every a pseudo Sm  CCId   𝜆 of 𝜁 is a Ps Sm  CId of 𝜁.  

Proof: It is clear  

Remark 2.14. The following example shows that convers of proposition is not correct inganeral.  

Example 2.15. Consider the a  pseudo Sm  BD- algebra 𝜁={0,1,2,3}  with binary operation"⋄"  "#"  defined by the following 

tables.  

 
And 𝑄={0,1} , Then 𝜁 a Ps Sm  BD- A where the pseudo Sm  Id    𝜆 ={0,1,2} is a Ps Sm   CId of 𝜁.  

But is not a Ps Sm  CCId   𝜆 of 𝜁. Since 1 ⋄ 2 = 3 ∉ 𝜆, 1#2 = 3 ∉ 𝜆, 𝑎𝑛𝑑 1, 2 ∈  𝜆 .   
Remark 2.16. 

Let (𝜁,⋄, #, 𝜊) a Ps Sm  BD -A and 𝜆 be a Ps CCId of 𝜁 then 𝜆 is a Ps Sm  CCId of 𝜁 .  

Proposition 2.17.  

Let (𝜁,⋄, #, 𝜊) be a Ps Sm  BD-A  and 𝜆 be Ps Sm  CId  such that 𝜀 ⋄ 𝜂 , 𝜀 # 𝜂 ∉ 𝜆 for all 𝜀 ∉ 𝜆 𝑎𝑛𝑑  𝜂 ∈ 𝜆, then 𝜆 is a Ps CId of 𝜁.   

Proof: Let 𝜆 be a Ps Sm  CId  of 𝜁 ⟹I is a Ps Sm  Id   of 𝜁. By theorem (2.8) , 𝜆 is a Ps Sm  CId of 𝜁 implies that 𝜊 ⋄ 𝜀, 𝜊#𝜀 ∈  𝜆. 

Therefore, I is a Ps CId of 𝜁. 

Proposition 2.18.  

Let (𝜁,⋄, #, 𝜊) be a Ps Sm  BD-A and 𝜆 be a Ps Sm  CCId such that 𝜀 ⋄ 𝜂, 𝜀 # 𝜂 ∉ 𝜆 for all 𝜀 ∉ 𝜆 𝑎𝑛𝑑  𝜂 ∈ 𝜆, then 𝜆 is Ps CCId   

of 𝜁.  

Proof: Let 𝜆 be a Ps Sm  CCId of 𝜁. This yield 𝜆 is a Ps Sm  Id   of 𝜁. by theorem (2.8) we have 𝜆 is a Ps Id   of 𝜁 [since 𝜆 a Ps Sm  

CCId of 𝜁] . It followos  𝜀 ⋄ 𝜂  𝑎𝑛𝑑  𝜀 # 𝜂 ∈ 𝜆, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜀, 𝜂 ∈ 𝜆.  Hence, 𝜆 is a Ps CCId of 𝜁. 

 

3. Conclusion  
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In this paper, the notions of a  Ps Sm  BD-A  , a  Ps Sm  Id   of BD-A  , a  Ps Sm  CId of BD-A  , a  Ps Sm  CCId of a BD-A   are 

introduced. Furthermore, the results are examined in terms of the relationships between a Ps Sm  CId of BD-A  , a Ps Sm  CCId   

of BD-A      
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