On a Pseudo Smarandache Ideals of BD-algebra

Dr. Ahmed Hamzah Abed1, Dr. Areej Tawfeeq Hameed2

1College of Islamic Sciences, AL Iraqia University, Baghdad, Iraq.

ahmed.h.abed@aliraqia.edu.iq

2College of Education for Pure Science Ibn-Al Haitham, University of Baghdad, Baghdad, Iraq areej.t@ihcoedu.uobaghdad.edu.iq

Abstract—In this paper the notion of a pseudo Samarandache BD-algebra, a pseudo Samarandache ideal, a pseudo Samarandache closed ideal and a pseudo Samarandache completely closed ideal of a pseudo Samarandache BD-algebra are defined. There notion are stadied. The relationships among these types of Ideals are discussed.

Keywords: BCK-algebra, BD-algebra, ideal of BD-algebra, a Smarandache of BD-algebra, a pseudo Smarandache ideal of BD – algebra, a pseudo Smarandache closed ideal of BD-algebra, a pseudo Smarandache completely closed ideal of BD-algebra.

Introduction

In 1966 by Y. Imai and K. Iseki introduceed the notion of BCKalgebra[12], In 1998, Y. B. Jun, E. H. Rogh and H. S. Kim introduceed the notion of a BH- algebra, and the notion of Id of a BH- algebra[12]. In 2022, T. Bantaojai and et. cl. introduceed the notion of a BD-A [1,12]. In this paper, we define the concepts of a pseudo Smarandache completely closed ideal and a pseudo Smarandache closed ideal of a pseudo Smarandache BD-algebra. We stated and proved some theorems which determine the relationships between these notions and some types of a pseudo Smarandache Ideals of a Smarandache BD-algebra.

1. Materials and Methods

In this section, some basic concepts about a BCK-algebra, a BD-algebra, a pseudo BD-algebra, pseudo Id and a pseudo closed ideal of a pseudo BD-algebra are given.

Definition 1.1[1,12].

A BD-algebra (BD-A) is a non-empty set ζ with a constant o and a binary " \diamond " satisfying the following axioms hold $\forall \varepsilon, \eta \in \zeta$, if

(1) $\varepsilon \diamond o = \varepsilon, \forall \varepsilon \in \zeta$,

 $(2)(\varepsilon \diamond \eta) = o \text{ and } \eta \diamond \varepsilon = o \text{ , then } \varepsilon = \eta \text{ .}$

Definition 1.2[14].

A Smarandache (Sm) BD-A is defined to be a BD-A $(\zeta; \circ, o)$ in which there exists a proper subset Q of ζ such that.

- i. $o \in Q$ and $|Q| \ge 2$
- ii. Q is a BD algebra under the operation of ζ .

Definition 1.3[1,12].

Let I be a nonempty subset of a BD-A $(\zeta; \circ, o)$ and $\lambda \neq \emptyset \subseteq \zeta$. Then λ is called an ideal (Id) of ζ if it is satisfies:

i. $o \in \lambda$,

ii. $\varepsilon \diamond \eta \in \lambda$ and $\eta \in \lambda$ imply $\varepsilon \in \lambda$, $\forall \varepsilon, \eta \in \zeta$.

Definition 1.4[1,12].

A nonempty subset λ of a Sm BD – algebra $(\zeta; \diamond, o)$ is called a Sm Id of ζ if:

i. $o \in \lambda$,

ii. $\varepsilon \diamond \eta \in \lambda$ and $\eta \in \lambda$ imply $\varepsilon \in \lambda$, $\forall \varepsilon \in \zeta$.

Proposition 1.5. Every Id of a Sm BD-A $(\zeta; \diamond, o)$ is a Sm Id of ζ .

Definition 1.6.

An Id λ of a BD-A $(\zeta; \diamond, o)$ is called a CId Id of ζ if and only if $o * \varepsilon \in \lambda$ for all $\varepsilon \in \lambda$

Definition 1.7. A Sm Id λ of a Sm BD -A (ζ ; \diamond , o) is called a Sm closed ideal (CId) of ζ if: for all $\varepsilon \in \lambda$, $o \diamond \varepsilon \in \lambda$

Proposition 1.8. Every CId Id of a Sm BHalgebra $(\zeta; \diamond, o)$ is a Sm CId of ζ .

Definition 1.9. An Id λ of a BD-A $(\zeta; \diamond, o)$ is called a completely closed ideal CId of ζ if it is Satisfies: $\varepsilon \diamond \eta \in \lambda, \forall \varepsilon, \eta \in \lambda$.

Remark 1.10. Every a CCId of BD-A $(\zeta; \diamond, o)$ is CId of ζ .

Definition 1.11. A Sm Id λ of a Sm BD-A $(\zeta; \circ, o)$ is called a Sm CCId of ζ if: $\varepsilon * \eta \in \lambda, \forall \varepsilon, \eta \in \lambda$.

Proposition 1.12. Every CCId of a BD-A $(\zeta; \diamond, o)$ is a Sm CCId of ζ .

Remarks 1.13. Every a Sm CCId of Sm BD-A $(\zeta; \diamond, o)$ is a Sm CId of ζ .

International Journal of Engineering and Information Systems (IJEAIS)

ISSN: 2643-640X

Vol. 9 Issue 4 April - 2025, Pages: 151-154

Definition 1.14. A pseudo (Po) *BD-A* $(\zeta; \diamond, o)$ is anon empty set with a constant 0 and two binary operations \diamond and # satisfying the following, $\exists \varepsilon, \eta, \iota \in \zeta$

(1) $\varepsilon \diamond o = \varepsilon \# o = \varepsilon$

(2) $(\varepsilon \circ \eta) = o$, $(\varepsilon \# \eta) = o$ and $(\eta \circ \varepsilon) = 0$, $(\eta \# \varepsilon) = 0$ implies $\varepsilon = \eta$.

Definition 1.15.

A nonempty subset λ of a Ps *BD-A* (ζ , \diamond , #, o) is called a Pseudo Ps Id of ζ if:

i. $o \in \lambda$,

ii. $\varepsilon \diamond \eta$, $\varepsilon \# \eta \in \lambda$ and $\eta \in \lambda$ imply $\varepsilon \in \lambda$, $\forall \varepsilon, \eta \in \zeta$.

Definition 1.16.

A Po Id λ of a Ps BD-algebra $(\zeta, \diamond, \#, o)$ is called a Po CId of ζ , if for every $\varepsilon \in \lambda$, we have $o \diamond \varepsilon$, $o \# \varepsilon \in \lambda$.

Definition 1.17.

A Po Id λ of a Ps BH -algebra $(\zeta, \diamond, \#, o)$ is called a Po CCId of ζ , if satisfies: $\varepsilon \diamond \eta, \varepsilon \# \eta \in \lambda$, for all $\varepsilon, \eta \in \lambda$.

Remarks 1.18.

Every a Ps CCId of a Ps BD-A $(\zeta, \diamond, \#, o)$ is a Ps CId of ζ .

2. Main Results

In this section, the concepts a Ps Sm BD-A, a pseudo Sm Id, a Ps Sm CIds and a pseudo Sm compeletly CIds of a Ps Sm BD-A are given.

Definition 2.1.

A Ps Sm BD-A $(\zeta, \diamond, \#, o)$ is defined to be a Ps BD-A in which there exists a proper subset Q of ζ such that i.o $\in Q$ and $|Q| \ge 2$

ii. Q is BD – A under the operations " \diamond " and "#" of ζ .

Example 2.2.

The a pseudo BH- algebra $\zeta = \{0, 1, 2, 3, 4\}$ with constant 0 and binary operations" o" and" #" defined the following tables

4	0	1	2	3	4	**	O	1	2	3	4
0	0	0	0	0	4	O	0	0	0	2	4
1	1	0	0	2	4	1	1	0	2.	3	- 1
2	2	1	0	2	-4	2	22	2	O	1	O
3	3	2	O	0	-1	3	3	0	0	0	2.
4	4	2	1	0	0	4	-1	1	1	1	0

and $Q = \{0,1,2\}$ is a Ps Sm BD-A.

Definition 2.3.

Let $(\zeta, \diamond, \#, o)$ be a Ps Sm BH-algebra An on empty subset λ of ζ is called a Ps Sm Id of ζ related to Q (or briefly, a Ps Sm Id of ζ if.

1- $o \in \lambda$,

2- $\forall \eta \in \lambda$, $\varepsilon \diamond \eta$, $\varepsilon \# \eta \in \lambda \text{ imply } \varepsilon \in \lambda, \forall \varepsilon \in Q$

Example 2.4.

Consider the Ps Sm BH- algebra $\zeta = \{0,1,2,3,4\}$ with the binary Operations " \diamond " and "#" defined by the tables.

*	()	1	2	3	4	#	0	1	2	3	4
0	0	0	0	3	4	0	0	0	0	3	4
1	1	0	0	2	3	1	1	0	0	2	1
2	12	1	0	2.	4	2	2	2	0	1	0
3	3	3	2	0	4	3	- 3	3	2	0	2
4	4	2	1	0	O	4	4	1	2	1	0

And $Q=\{0,1,2\}$ the subset $\lambda=\{0,1,3\}$ is a Ps Sm Id of ζ .

Proposition 2.5.

Let $(\zeta, \diamond, \#, o)$ be a pseudo Sm – BD-A. Then every a Ps Id of ζ is a Ps Sm. Id of ζ .

Proof: It is clear **Remark 2.6.**

The following example shows that convers of proposition is not correct in general.

Example 2.7.

Consider the a Ps Sm BD- A $\zeta = \{0,1,2,3\}$ with binary operations " \diamond " and "#" defined by the following tables.

International Journal of Engineering and Information Systems (IJEAIS)

ISSN: 2643-640X

Vol. 9 Issue 4 April - 2025, Pages: 151-154

*	0	1	2	3	#	0	1	2	3
0	0	0	2	3	0	0	0	2	3
1	1	0	1	2	1	1	0	0	2
2	2	2	0	1	2	2	2	0	1
3	3	3	2	О	3	3	3	2	0

And $Q = \{0,1\}$. The subset $\lambda = \{0,2\}$ is a Ps Sm Id of ζ but it is not a Ps Id of ζ , since $3 \diamond 2 = 2 \in \lambda$ and $3\#2 = 2 \in \lambda$ but $3 \notin \lambda$ **Theorem (2.8)**

Let $(\zeta, \diamond, \#, o)$ be a Ps Sm BD- algebra and λ be a pseudo Sm Id such that $\varepsilon \diamond \eta, \varepsilon \# \eta \notin \lambda$, for all $\varepsilon \notin \lambda$ and $\eta \in \lambda$, then λ is a Ps Id of ζ .

Proof:

Let λ be a Ps Sm Id of $(\zeta, \diamond, \#, o)$, $\varepsilon \in \zeta$, and $\eta \in \lambda$,

- 1- $o \in \lambda$,
- 2- let $\varepsilon * \eta, \varepsilon # \eta \in \lambda$ and $\eta \in \lambda$.

Then we have two cases. Case 1 if $\varepsilon \in Q \implies \varepsilon \in \lambda$

Case 2 if $\varepsilon \notin Q$, either $\varepsilon \in \lambda$, or $\varepsilon \notin \lambda$. If $\varepsilon \in \lambda \Rightarrow \lambda$ is a pseudo idealif $\varepsilon \notin \lambda$, $\Rightarrow \varepsilon \circ \eta$, $\varepsilon \# \eta \notin \lambda$. And this contradiction since $\varepsilon \circ \eta$, $\varepsilon \# \eta \in \lambda$. Therefore, λ is a Ps Id.

Definition 2.9.

A Ps Sm Id λ of a Ps Sm BD-A $(\zeta, \diamond, \#, o)$ is called a Ps Sm CId of ζ if $o \diamond \varepsilon, o \# \varepsilon \in \lambda, \forall \varepsilon \in \lambda$.

Example 2.10.

The a Ps Sm Id $\lambda = \{0,1,3\}$ of ζ in example (2.4) is a Ps Sm CId of ζ .

Definition 2.11.

A Ps Sm Id λ of a Ps Sm BD-A $(\zeta, \diamond, \#, o)$ is called a Ps Sm CCId of ζ if $\varepsilon \diamond \eta$ and $\varepsilon \# \eta \in \lambda, \forall \varepsilon, \eta \in \lambda$.

Example 2.12.

the a Ps Sm Id $\lambda = \{0,4\}$ of ζ in example (2.4) is a Ps Sm CCId of ζ .

Proposition 2.13.

Let $(\zeta, \diamond, \#, o)$ is a Ps Sm BD –A. Then every a pseudo Sm CCId λ of ζ is a Ps Sm CId of ζ .

Proof: It is clear

Remark 2.14. The following example shows that convers of proposition is not correct inganeral.

Example 2.15. Consider the a pseudo Sm BD- algebra $\zeta = \{0,1,2,3\}$ with binary operation " \circ " "#" defined by the following tables.

*	0	1	2	3
0	0	0	1	3
1	1	0	3	1
2	2	3	0	2
3	3	2	1	0

0	1	2	3
0	0	2	3
1	0	3	1
2	3	0	3
3	3	1	0
	1 2	1 0 2 3	0 0 2 1 0 3 2 3 0

And $Q = \{0,1\}$, Then ζ a Ps Sm BD- A where the pseudo Sm Id $\lambda = \{0,1,2\}$ is a Ps Sm CId of ζ .

But is not a Ps Sm CCId λ of ζ . Since $1 \diamond 2 = 3 \notin \lambda$, $1\#2 = 3 \notin \lambda$, and $1, 2 \in \lambda$.

Remark 2.16.

Let $(\zeta, \diamond, \#, o)$ a Ps Sm BD -A and λ be a Ps CCId of ζ then λ is a Ps Sm CCId of ζ .

Proposition 2.17.

Let $(\zeta, \circ, \#, o)$ be a Ps Sm BD-A and λ be Ps Sm CId such that $\varepsilon \circ \eta$, $\varepsilon \# \eta \notin \lambda$ for all $\varepsilon \notin \lambda$ and $\eta \in \lambda$, then λ is a Ps CId of ζ . **Proof:** Let λ be a Ps Sm CId of $\zeta \Longrightarrow$ I is a Ps Sm Id of ζ . By theorem (2.8), λ is a Ps Sm CId of ζ implies that $o \circ \varepsilon$, $o \# \varepsilon \in \lambda$. Therefore, I is a Ps CId of ζ .

Proposition 2.18.

Let $(\zeta, \circ, \#, o)$ be a Ps Sm BD-A and λ be a Ps Sm CCId such that $\varepsilon \circ \eta$, $\varepsilon \# \eta \notin \lambda$ for all $\varepsilon \notin \lambda$ and $\eta \in \lambda$, then λ is Ps CCId of ζ .

Proof: Let λ be a Ps Sm CCId of ζ . This yield λ is a Ps Sm Id of ζ . by theorem (2.8) we have λ is a Ps Id of ζ [since λ a Ps Sm CCId of ζ]. It follows $\varepsilon \diamond \eta$ and $\varepsilon \# \eta \in \lambda$, for all $\varepsilon, \eta \in \lambda$. Hence, λ is a Ps CCId of ζ .

3. Conclusion

International Journal of Engineering and Information Systems (IJEAIS)

ISSN: 2643-640X

Vol. 9 Issue 4 April - 2025, Pages: 151-154

In this paper, the notions of a Ps Sm BD-A , a Ps Sm Id of BD-A , a Ps Sm CId of BD-A , a Ps Sm CCId of a BD-A are introduced. Furthermore, the results are examined in terms of the relationships between a Ps Sm CId of BD-A , a Ps Sm CCId of BD-A

References

- [1] Bantaojai T., Suanoom C., Phuto J. and Iampan A., **On BD-algebras**, International Journal of Mathematics and Computer Science, 17(2), (2022), 731–737.
- [2] Hameed A.T. and Kadhim E.K., (2020), **Interval-valued IFAT-Ideals of AT-algebra**, Journal of Physics: Conference Series (IOP Publishing), 2020, pp:1-5.
- [3] Hameed A.T. and Malik N.H., (2021), (b, a)-Fuzzy Magnified Translations of AT-algebra, Journal of Physics: Conference Series (IOP Publishing), 2021, pp:1-13.
- [4] Hameed A.T. and Malik N.H., (2021), **Magnified translation of intuitionistic fuzzy AT-Ideals on AT-algebra**, Journal of Discrete Mathematical Sciences and Cryptography, (2021), pp:1-7.
- [5] Hameed A.T. and Raheem N.J., (2020), **Hyper SA-algebra**, International Journal of Engineering and Information Systems (IJEAIS), vol.4, Issue 8, pp.127-136.
- [6] Hameed A.T. and Raheem N.J., (2021), **Interval-valued Fuzzy SA-Ideals with Degree (l,k) of SA-algebra**, Journal of Physics: Conference Series (IOP Publishing), 2021, pp:1-13.
- [7] Hameed A.T., Ali S.H. and Flayyih R.A., (2021), **The Bipolar-valued of Fuzzy Ideals on AT-algebra**, Journal of Physics: Conference Series (IOP Publishing), 2021, pp:1-9.
- [8] Hameed A.T., Faleh H.A. and Abed A.H., (2021), **Fuzzy Ideals of KK-algebra**, Journal of Physics: Conference Series (IOP Publishing), 2021, pp:1-7.
- [9] Hameed A.T., Ghazi I.H. and Abed A.H., (2020), **Fuzzy α-translation AB- Ideals of AB-algebras**, Journal of Physics: Conference Series (IOP Publishing), 2020, pp:1-19.
- [10] Hameed A.T., Kareem F. F. and Ali S.H., (2021), **Hyper Fuzzy AT- Ideals of AT-algebra**, Journal of Physics: Conference Series (IOP Publishing), 2021, pp:1-15.
- [11] Hameed A.T., Raheem N.J. and Abed A.H., (2021), **Anti-fuzzy SA- Ideals with Degree (l,k) of SA-algebra**, Journal of Physics: Conference Series (IOP Publishing), 2021, pp:1-16.
- [12] Kumar S. R., (2021), **On BD Algebras**, International Journal of Trend in Scientific Research and Development ,5 ,Issue 4, 870-873.
- [13] Meng J. and Jun Y.B., 1994, BCK-algebras, Kyung Moon Sa Co, Seoul, Korean.
- [14] Nakkhasen W., Phimkota S., Phoemkhuen K. and Iampan A., (2024), **Characterizations of fuzzy Bd-Ideals in BD-algebras**, International Journal of Mathematics and Computer Science, vol.19, no.3, pp:757–764.
- [15] Hameed A.T. and Abed A.H., (2025), **Some Results about Pseudo with BD-algebra**, International Journal of Engineering and Information Systems (IJEAIS), Vol. 9, Issue 4, pp. 1-7.