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Abstract— This paper examines recent advancements and discoveries concerning Kullback-Leibler divergence. 

 

1- Introduction  

In this review, we highlight the Kullback-Leibler divergence as a fundamental concept used in numerous research 

studies. To provide a deeper understanding of this concept, this section presents the key principles and foundations explored in 

previous research, organized in a way that clarifies their role and significance in various fields 

.Definition 1.1[1,2,3,4,6,7,8]: The Kullback-Leibler (KL) distance, measures the difference between two probability distributions 

p(x) and q(x), given by:𝐷(𝑝||𝑞) = ∫ 𝑝(𝑥)𝑙𝑜𝑔
𝑝(𝑥)

𝑞(𝑥)
𝑑𝑥 = 𝐸𝑝[𝑙𝑜𝑔

𝑝(𝑥)

𝑞(𝑥)
]. 

Definition 1.2[1]: The J-divergence distance is a symmetric version of the KL distance, defined as 𝐷𝑠(𝑝||𝑞) =  𝐷(𝑝||𝑞) + 𝐷(𝑞||𝑝). 
Definition 1.3[1]: A Reproducing Kernel Hilbert Space (RKHS) is a functional space associated with a positive kernel function 

𝑘(𝑥, 𝑦). 
Definition 1.4[3]: The Hyperanalytic Wavelet Transform is defined using the hypercomplex mother wavelet 𝑤𝑎(𝑥, 𝑦) associated 

with a real mother wavelet 𝑤(𝑥, 𝑦) as follows: 

𝑤𝑎(𝑥, 𝑦) = 𝑤(𝑥, 𝑦) + 𝑖𝐻𝑥{𝑤(𝑥, 𝑦)} + 𝑗𝐻𝑦{𝑤(𝑥, 𝑦)} + 𝑘𝐻𝑥{𝐻𝑦{𝑤(𝑥, 𝑦)}}    
where 𝐻𝑥 and 𝐻𝑦  are the Hilbert transforms across rows and columns, respectively. 

Definition 1.5[3]: The Complex Generalized Gaussian Distribution CGGD  for a bivariate probability density function 𝑧𝑏 is defined 

in the general form: 

𝑝(𝑥, 𝑦) =
𝛽(𝑐)

𝜎2
𝑒𝑥𝑝 {−(

𝛤 (
2
𝑐
)

𝛤 (
1
𝑐
)
)

𝑐

 (
𝑥2 + 𝑦2

𝜎2
)

𝑐

} 

where 𝛽(𝑐) =
𝑐𝛤(

2

𝑐
)

𝜋𝛤2(
1

𝑐
)
  , and Γ is the gamma function. 

Definition 1.6[4]: The probability density function of the Weibull distribution is given by  

𝑓(𝑥) =


𝑙
 (
𝑥

𝑙
)−1exp |−(

𝑥

𝑙
)| 

Definition 1.7[4]: The Euler-Mascheroni constant  is a mathematical constant that appears frequently in special functions, 

particularly in expressions involving the Gamma function and logarithmic integrals. Its approximate value is: 𝛾 ≈ 0.5772 . 

Definition 1.8[5]: If 𝑋 and 𝑌 are random variables with cumulative distribution functions 𝐹(𝑥) and 𝐺(𝑥), respectively, the 

cumulative Kullback-Leibler information is defined as: 

𝐺𝐾𝐿(𝑋, 𝑌) = ∫ 𝐹(𝑡)log (
𝐹(𝑡)

𝐺(𝑡)

max {𝑟𝑋,𝑟𝑌}

𝑙

)𝑑𝑡 + 𝐸(𝑋) − 𝐸(𝑌) 

Where 𝑙 = inf {𝑡 ∈ 𝑅: 𝐹(𝑡) > 0} and 𝑟𝑋 = sup {𝑡 ∈ 𝑅: 𝐹(𝑡) < 1} 
Definition 1.9[5]: A measure of the difference between two probability distributions based on their cumulative distribution 

which is called  the cumulative inaccuracy is defined by the functions: 

𝐾(𝑋, 𝑌) = −∫ 𝐹(𝑡) log(𝐺(𝑡)) 𝑑𝑡
𝑚𝑎𝑥 {𝑟𝑋,𝑟𝑌}

𝑙

 

Definition 1.10[6]: A random variable 𝑥 and a positive random variable 𝑦 follow a normal-gamma distribution if their joint 

probability density function is given by: 

𝑝(𝑥, 𝑦) = 𝑁(𝑥; 𝜇, (𝑦 ⋏)−1. 𝐺𝑎𝑚(𝑦; 𝑎, 𝑏) 
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where 𝑁(𝑥; 𝜇, 𝛴) is the multivariate normal distribution, and Gam(y; a, b) is the gamma distribution: 𝐺𝑎𝑚(𝑦; 𝑎, 𝑏) =
𝑏𝑎

𝛤(𝑎)
𝑦𝑎−1𝑒−𝑏𝑦, 𝑦 > 0 

Definition 1.11[6]: When applying a general linear model (GLM) with normal-gamma conjugate priors: 

𝑦 = 𝑋𝛽 + 𝜖, 𝜖~𝑁(0, 𝜎2𝑉) 
The model complexity is computed using the KL divergence between the posterior and prior:  

𝐶𝑜𝑚(𝑚) = 𝐾𝐿[𝑝(𝛽, 𝜏 ∣ 𝑦) ∣∣ 𝑝(𝛽, 𝜏)] 

Definition 1.12[7]: The discrete normal distribution 𝑁𝑍(𝜇, 𝛴) is the unique discrete distribution defined on the integer lattice 

support 𝑍𝑑with mean μ and covariance matrix 𝛴 that maximizes Shannon entropy. Its probability mass function (pmf) is expressed 

as an exponential family . 

Definition 1.13[7]: The Renyi divergence 𝐷𝛼[𝑟: 𝑠] between two probability mass functions 𝑟(𝑥) and 𝑠(𝑥) on the support Ӽ = 𝑍𝑑  is 

defined for any positive real number 𝛼 ≠ 1 as:  

𝐷𝛼[𝑟: 𝑠] =
1

𝛼−1
𝑙𝑜𝑔(∑ 𝑟(𝑥)𝛼𝑠(𝑥)1−𝛼𝑥∈Ӽ ) . 

Definition 1.14[7]: The Sharma-Mittal  divergence  

 𝐷𝛼,𝛽[𝑝: 𝑞] between two probability mass functions 𝑝(𝑥) and 𝑞(𝑥) on the support Ӽ is defined as: 

𝑫𝜶,𝜷[𝒑: 𝒒] =
𝟏

𝜷 − 𝟏

(

 
 
(∑𝒑(𝒙)𝜶𝒒(𝒙)𝟏−𝜶

𝒙∈Ӽ

)

𝟏−𝜷
𝟏−𝜶

− 𝟏

)

 
 

 

Definition 1.15[7]:  The squared Hellinger divergence Hellinger 𝐷𝐻𝑒𝑙𝑙𝑖𝑛𝑔𝑒𝑟
2 [𝑟, 𝑠] between two probability mass functions 

𝑟(𝑥) and 𝑠(𝑥) is defined as: 

𝑫𝑯𝒆𝒍𝒍𝒊𝒏𝒈𝒆𝒓
𝟐 [𝒓, 𝒔] =

𝟏

𝟐
∑ (√𝒓(𝒙) − √𝒔(𝒙))

𝟐

𝒙∈Ӽ   

 

2- Review 

Shaohua Kevin Zhou and Rama  Chellappa[1]  proposed a novel approach for computing the Kullback-Leibler (KL) distance 

between two Gaussian distributions in Reproducing Kernel Hilbert Space (RKHS). Their study addresses the limitations of 

traditional KL distance computation, particularly in handling nonlinear data structures. By embedding data into RKHS using kernel 

methods, they derived new analytical expressions for KL and J-divergence distances between two Gaussian distributions .To 

overcome the computational challenges posed by the infinite-dimensional nature of RKHS ,they introduced a low-rank 

approximation of the covariance matrix , ensuring that the dominat  eigenpairs are preserved . Additionally , they analyzed  the 

limiting behavior of the KL distance   as the regularization parameter 𝜌 approaches zero, demonstrating that the proposed method 

maintains key statistical properties while improving the computational efficiency . The proposed method was evaluated on both 

synthetic and real-world datasets. In synthetic experiments, it effectively distinguished non-Gaussian distributions (such as "O", "D", 

and "X"-shaped uniform distributions) that share the same mean and covariance matrix—cases where traditional Gaussian models 

fail due to their reliance on second-order statistics only . In a face recognition application, the method achieved higher recognition 

accuracy (13/15 cases correctly classified) compared to conventional KL-based techniques showcasing its robustness in real-world 

pattern recognition tasks . The study demonstrated that RKHS enhances pattern separability by enabling a more expressive 

representation of data , making it a powerful tool for probabilistic modeling, machine learning, and pattern recognition. This approach  

provides an efficient framework for analyzing distributions  in high-dimensional spaces, with potential applications in computer 

vision, statistical learning and kernel-based classification methods. 

Researcher Sergiu C. Dragomir, in his study [2], arrived at several important findings regarding the properties of the 

exponential function of the Kullback-Leibler divergence. He proved that the function 𝑒𝑥𝑝[−𝐷(𝑝||𝑞)] exhibits the superadditivity 

property, meaning that combining two probability distributions does not reduce its value. Additionally, he demonstrated that this 

function maintains upper and lower bounds under specific likelihood ratio conditions, providing constraints on its possible values. 

Furthermore, he established that 𝑒𝑥𝑝[−𝐷(𝑝||𝑞)] is concave over the convex cone of probability distributions, implying that a mixture 

of distributions results in a value greater than or equal to the weighted average of the original values. The researcher also introduced 

lower bounds for the exponential function of the Kullback-Leibler divergence when using the harmonic mean of probability 

distributions, proving that 𝑒𝑥𝑝[𝐷(𝑝||𝐻(𝑞, 𝑟))] is always greater than or equal to the arithmetic mean of the original values. Finally, 

he conducted numerical experiments and analyzed the behavior of the relationships using graphical representations, confirming the 

theoretical results and reinforcing their applications in various fields such as Bayesian statistics, data analysis, and machine learning 

models. 
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Corina Nafornita and her colleagues (Yannick Berthoumieu, Ioan Nafornita, Alexandru Isar)[3] studied the Kullback-

Leibler Distance (KL Distance) between Complex Generalized Gaussian Distributions (CGGD). The research focused on feature 

extraction in complex domain transforms, such as the Hyperanalytic Wavelet Transform (HWT), which exhibits a circularly 

symmetric distribution for subband coefficients. The CGGD model was used to model these coefficients, and a closed-form 

expression for the Kullback-Leibler distance between two CGGD distributions was derived.The results showed that the Kullback-

Leibler distance is zero when the shape parameters of the two distributions are equal, and the sensitivity of this distance increases 

when the shape parameters differ. However, it was observed that the distance varies only slightly in certain intervals, which may 

limit its effectiveness in texture classification. The sensitivity of the distance to the shape parameters was analyzed, and it was found 

to be more responsive to shape parameter values closer to 0.3 compared to the Gaussian case (where the shape parameter is 1).The 

research concluded that the Kullback-Leibler distance can be useful for measuring the similarity between probability density 

functions of subbands, but it may not be sufficient in all cases, calling for the study of additional measures for texture classification 

in the future. 

Researcher Christian Bauckhage[4], in this study, derived a closed-form solution for computing the Kullback-Leibler (KL) 

Divergence between two Weibull distributions, which is considered a significant scientific contribution since this divergence has 

often been mentioned in the literature but rarely presented explicitly and clearly. The researcher demonstrated that this divergence 

depends on the shape and scale parameters of the two distributions and involves logarithmic functions, the Euler-Mascheroni 

constant, and the Gamma function. The validity of the derived formula was confirmed by applying it to a special case where both 

distributions are exponential, simplifying the formula to the well-known expression for KL divergence between exponential 

distributions, thereby verifying the correctness of the mathematical approach. The researcher also highlighted the importance of this 

result for practical applications, particularly in fields such as data analysis, machine learning, and statistical model comparison, 

noting its potential use as a basis for constructing kernel functions that can be employed for classification using Support Vector 

Machines (SVM). Additionally, the study emphasized that this result has broad applications in text analysis, information retrieval, 

and image and text processing, as Weibull distributions are widely used to describe data characteristics in these domains. 

The authors Antonio Di Crescenzo and Maria Longobardi[5] studied some properties and applications of cumulative 

Kullback-Leibler information, which serves as an extension of the traditional Kullback-Leibler information to the cumulative 

distribution function. The study included developing lower and upper bounds for this measure, as well as proposing a dynamic 

version for its application to past lifetimes, linking it to new concepts of relative aging. Additionally, two main applications were 

presented: the first involves analyzing the failure of nanocomponents by assessing the impact of stress levels on load duration, while 

the second focuses on digital image analysis using the empirical version of this measure to evaluate differences in gray levels between 

images. 

Joram Soch and Carsten Allefeld[6] derived the Kullback-Leibler (KL) divergence for the normal-gamma distribution and 

demonstrated its equivalence to the Bayesian complexity penalty in the univariate general linear model (GLM) with conjugate priors. 

They applied this finding to two case studies: one using simulated data to analyze polynomial basis function selection and another 

using empirical neuroimaging data to compare different GLM formulations for functional MRI (fMRI) analysis. Their results 

highlight that the KL divergence effectively quantifies model complexity and helps detect differences between models that cannot 

be captured by accuracy alone, offering a more nuanced approach to model selection compared to traditional criteria like AIC or BIC. 

Frank Nielsen[7] provided a comprehensive analysis of statistical divergences between discrete normal distributions, with a 

particular focus on the Kullback-Leibler divergence. The researcher demonstrated that discrete normal distributions form an 

exponential family with a cumulant function related to the Riemann theta function. The study presented several formulas for 

calculating common statistical divergences between these distributions, including the Renyi divergence and the Sharma-Mittal 

divergence. Additionally, the researcher introduced an efficient approximation technique for computing the Kullback-Leibler 

divergence using Renyi divergences or projective γ-divergences. Numerical examples were provided to illustrate these formulas and 

approximation techniques, highlighting their practical applications in fields such as machine learning and lattice-based cryptography. 

Yufeng Zhang et al.[8] presented several key findings. The researchers proved that the reverse KL divergence can be 

bounded by an upper limit based on the Lambert W function when the forward KL divergence is constrained, indicating an 

approximate symmetry between the two directions for small values. Additionally, the study showed that KL divergence between 

three Gaussian distributions satisfies a relaxed triangle inequality, meaning that KL(N1||N3) can be expressed in terms of  

KL(N1||N2) and KL(N2||N3). These results are dimension-independent, making them highly applicable in high-dimensional fields 

such as deep learning, reinforcement learning, and sample complexity research, where they have been used in out-of-

distribution (OOD) detection analysis and to provide theoretical guarantees for Gaussian policies in reinforcement learning. 
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