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Abstract: Our work consists of some types of  convexly compact dissipativity for random dynamical systems, these types: point ( 

𝑐𝑘 −), compact ( 𝑐𝑘 −), local ( 𝑐𝑘 −), bounded ( 𝑐𝑘 −). Weakly ( 𝑐𝑘 −) and the relationship among them. Additionally, we give a 

description of the structure of a convexly compact global attractor (random Levinson center) for RDSs. Finally, we present a 

mathematical model and analysis for a stochastic reaction-diffusion system and find the convexly compact attractor of this model.  
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1.Introduction:  

 Dissipative systems have an importance in many science such as physics and engineering. The hypothesis  of  dissipation yield 

results in essential constraint on behavior of its dynamic. Many papers devoted to the study the dissipativety of RDSs, see, for 

example, J. Huang [8], C. Kuehn [10], Y. Wang [11]. A. Gu [7], L. Yuhong [17], A. Yasir, I. Kadhim [12, 13,14,15,16 ].  

Stochastic environmental models (e.g. prey-predator interaction models or epidemic prevalence models) which include random 

effects (environmental or genetic noise). In such systems, stability and dissipation reflect the ability of the system to return to a 

state of equilibrium after disturbances, which is important for analyzing the survival or extinction of species. But when spaces are 

non-compact, the traditional concept of  (dissipation) is not enough, and this is where convexly compact dissipation comes into 

play. 

The use of convexly compact dissipation allows proving the existence of attraction groups (attractors) or non-random 

measurements (stationary measures) even in spaces that are not completely compact but convex compact (as in some spaces of 

functions).  

 

2. Preliminaries: 

This section contains the basic definitions and properties of RDSs, For more details, one can see [1], [2], [9]. 

Definition 2.1[9]: 𝐿𝑒𝑡 (Ω, ℱ, ℙ) be a probability space and θ: 𝕋 × Ω ⟶ Ω is measurable function satisfy the following  

θ0 =  id, θt ∘ θs = θt+s for all t, s ∈ 𝕋 ;  and  θtℙ = ℙ for all t ∈ 𝕋. 

A set B ∈ ℱ is called 𝛉 −invariant if θtB = B for all t ∈ 𝕋 . An MDS  θ called ergodic under ℙ if for any θ −invariant set B ∈ ℱ 

we have either ℙ(B) = 0 or ℙ(B) = 1. 

Definition 2.2[9]: 𝐿𝑒𝑡 X be a topological space and 𝕋 be a locally compact group. The random dynamical system (RDS) is a pair 

(θ, 𝜑) involving an MDS θ and a cocycle 𝜑 over θ of continuous mappings of X , i.e. a measurable mapping 

𝜑 ∶ 𝕋 × Ω × 𝑋 ⟶ 𝑋,  (𝑡, 𝜔, 𝑥) ⟼ 𝜑(𝑡, 𝜔, 𝑥) , such that 

 (1) for every t ∈ 𝕋 and ω ∈ Ω, the function  𝑥 ⟼  𝜑(𝑡, 𝜔, 𝑥) ≡  𝜑(𝑡, 𝜔)𝑥 is continuous  

 (2) for all t, s ∈ 𝕋 and ω ∈ Ω ,the function 𝜑(𝑡, 𝜔): = 𝜑(𝑡, 𝜔,·) fulfill: 

𝜑(0, 𝜔) = id, 𝜑(𝑡 + 𝑠, 𝜔) = 𝜑(𝑡, θs𝜔) ∘ 𝜑(𝑠, 𝜔)  . 
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The property (ii) called cocycle property of 𝜑. 

Definition 2.3[9]: Consider the metric space (X, 𝑑). 

(1) A random set is  The set-valued function  ω ⟼ M(ω) ≠ ∅ such that for any 𝑥 ∈ 𝑋 the function 

ω ⟼  distX(𝑥, M(ω)) 

is measurable. The random set M is called a random closed set  if M(ω) is closed for each ω ∈ Ω and any adjective applying on 

M(ω) is closed for each ω ∈ Ω applied similarly on 𝑀 .  

(2) A random set {M(ω)} is said to be bounded if for some  𝑥0 ∈ X and some positive  random variable 𝑟(𝜔) the following fulfill   

M(ω) ⊂ {x ∈ X: d(x, x0) ≤ r(ω)}   for all ω ∈  Ω. 

 (3) A tempered random variable (t.r.v) is a measurable function 𝜀: Ω ⟶ ℝ with  

lim
𝑡⟶+∞

1

|𝑡|
log|𝜀(𝜃𝑡𝜔)| = 0. 

Definition 2.13 [9]: Let 𝑀: ω → M(ω) be a random set. The set-valued function  

ω ⟼ Γ𝑀(𝜔) ≔∩ 𝛾𝑀
𝑡 (𝜔)̅̅ ̅̅ ̅̅ ̅̅ =∩  ∪ 𝜑(𝜏, 𝜃−𝜏𝜔)𝑀(𝜃−𝜏𝜔)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑡 > 0, 𝜏 ≥ 𝑡 

is called the omega-limit set of the trajectories starting from 𝑀.  

Definition 2.4 [9]: Consider the RDS (𝜃, φ) . A set-valued mapping  𝜔 ⟼ 𝑆(𝜔)is called forward invariant (backward invariant 

) whenever  for all 𝑡 > 0 and 𝜔 ∈ Ω we have  φ(𝑡, 𝜔)𝑆(𝜔) ⊆ 𝑆(𝜃𝑡𝜔)( respectively, 𝑆(𝜃𝑡𝜔) ⊆ φ(𝑡, 𝜔)𝑆(𝜔) ).  

Definition 2.5 [9]: A collection 𝒰 of random sets is called a universe of sets if  

(1) Every members of 𝒰 is closed, and 

(2) 𝒰 is closed with respect to inclusions . 

Definition 2.6 [9]: An absorbing random set for RDS (θ, φ) in the universe 𝒰 is a random set 𝐴 have the property that  

  if for every M ∈ 𝒰 and for all ω there exists t0(ω) with 

φ(t, θ−tω)M(θ−tω) ⊂ A(ω) for all t ≥ t0(ω), ω ∈ Ω. 

Definition 2.8 [9]: A random closed set {𝑀(𝜔)} from a universe ℳ is called a random attractor of RDS (𝜃, 𝜑) in ℳ if 𝐵(𝜔) is 

proper subset of  𝑋 for every 𝜔 ∈ Ω and : 

(1) 𝐵 is an invariant set, i.e. 𝜑(𝑡, 𝜔)𝐵(𝜔) = 𝐵(𝜃𝑡𝜔) for 𝑡 ≥ 0, 𝜔 ∈ Ω; 

(2) 𝐵 is an attracting in 𝒰, i.e. for all 𝑀 ∈ 𝒰 

lim
𝑛→+∞

𝑑𝑋{𝜑(𝑡, 𝜃−𝑡𝜔)𝑀(𝜃−𝑡𝜔), 𝐵(𝜔)} = 0, 𝜔 ∈ Ω 

Where 𝑑𝑋{𝐴 ∖ 𝐵} = 𝑠𝑢𝑝𝑥∈𝐴𝑑𝑖𝑠𝑋(𝑥, 𝐵). 
Definition 2.18[3]: 𝐿𝑒𝑡 (𝑋, 𝑑) be a metric space, 𝐾 ⊂ 𝑋 is precompact or totally bounded if every sequence in 𝐾 admits  a 

subsequence converges to a point of 𝑋. 

Definition 2.10 [9]: Let  𝐷 ∶ ω ⟼ D(ω) be a multifunction. We call the multifunction 

ω ⟼  𝛾𝐷
𝑡  (𝜔) ∶= ⋃ 𝜑(𝜏, 𝜃−𝜏𝜔)𝐷(𝜃−𝜏𝜔)

𝜏≥𝑡

 

the tail (from the moment t) of the pullback trajectories emanating from D. If D(ω) = {v(ω)} is a single valued function, then ω ⟼
𝛾𝑣(ω) ≡ 𝛾𝐷

0 (𝜔) is said to be the (pull back) trajectory (or orbit) emanating from 𝑣. 
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Definition 2.11[9]: Let (𝜃, 𝜑) be an RDS. A random set 𝐴 is said to be attract another random set 𝐵 if ℙ −almost surely  

lim
𝑡⟶∞

𝑑(𝜑(𝑡, 𝜃−𝑡𝜔)𝐵(𝜃−𝑡𝜔), 𝐴(𝜔)) = 0 

Lemma 2.12 [9]: If 𝐴 attracts 𝐵 then 𝑑(𝜑(𝑡, 𝜃−𝑡𝜔)𝐵(𝜃−𝑡𝜔), 𝐴(𝜔)) ⟶ 0, 𝑎𝑠 𝑛 → ∞ in probability.  

3. Convexly Compact Attractors  

In 1967, Komlós proved that every norm-bounded sequence in 𝕃1 possesses a subsequence whose Cesàro means converge almost 

surely (a.s.). In this section, that classical result is revisited from the perspective of convex compactness. Emphasis is placed on the 

fact that, in contrast to Komlós’ theorem—which employs equal (Cesàro) weights—convergence is here obtained through arbitrary 

convex combinations (cf. [6]). 

Let A be a non-empty set. The set Fin(A) consisting of all non-empty finite subsets of A carries a natural structure of a partially 

ordered set when ordered by inclusion. Moreover, it is a directed set, since D1, D2 ⊆ D1 ∪ D1 for any D1, D1 ∈ Fin(A). We remind 

the reader that for a subset 𝐶 of a Banach space 𝑋, conv 𝐶 denotes the smallest convex subset of 𝑋 containing 𝐶. 

Definition 3.1. A convex set 𝐶 of a Banach space 𝑋 is said to be convexly compact if for any non-empty set 𝐴 and any family 

{𝐹𝛼}𝛼∈𝐴 of closed and convex subsets of 𝐶, the condition 

∀ 𝐷 ∈ Fin(A), ⋂ 𝐹𝛼α∈D ≠ ∅                                  (3.1) 

implies 

⋂ 𝐹𝛼α∈A ≠ ∅,                                                       (3.2) 

In the absence of the additional condition that the sets {𝐹𝛼}𝛼∈𝐴 be convex, Definition 3.1 postulating the finite-intersection property 

for families of closed and convex sets would be equivalent to the classical definition of compactness. It is, therefore, any convex and 

compact subset of a topological vector space is convexly compact. 

Example 3.2 (Convex compactness without compactness). Let 𝐿 be a locally-convex topological vector space, and let 𝐿∗ be the 

topological dual of 𝐿, endowed with some compatible topology 𝜏, possibly different from the weak-* topology 𝜎(𝐿∗, 𝐿). For a 

neighborhood 𝑁 of 0 in 𝐿, define the set 𝐶 in the topological dual 𝐿∗ of 𝐿 by 

𝐶 = {𝑥∗ ∈ 𝐿: 〈𝑥, 𝑥∗〉 ≤ 1, ∀𝑥 ∈ 𝑁}. 

In other words, 𝐶 = 𝑁∘ is the polar of 𝑁. By the Banach-Alaoglu Theorem, 𝐶 is compact with respect to the weak-* topology 

𝜎(𝐿∗, 𝐿), but it may not be compact with respect to 𝜏. On the other hand, let {𝐹𝛼}𝛼∈𝐴 be a non-empty family of convex and 𝜏 −closed 

subsets of 𝐶 with the finite-intersection property (3.1). It is a classical consequence of the Hahn-Banach Theorem that the collection 

of closed and convex sets is the same for all topologies consistent with a given dual pair. Therefore, the sets {𝐹𝛼}𝛼∈𝐴 are 

𝜎(𝐿∗, 𝐿) −closed, and the relation (3.2) holds by the aforementioned 𝜎(𝐿∗, 𝐿) compactness of 𝐶. 

 In the following we  Characterize the notion of convexly compact  in terms of generalized sequences. 

Definition 3.3. Let {𝑥𝛼}𝛼∈𝐴 be a net in a Banach space 𝑋. A net {𝑦𝛽}𝛽∈𝐵 is said to be a subnet of convex combinations of {𝑥𝛼}𝛼∈𝐴 

if there exists a mapping 𝐷: 𝐵 ⟶ 𝐹𝑖𝑛(𝐴) such that  

1.  𝑦𝛽  ∈  conv{𝑥𝛼 ∶ 𝛼 ∈ 𝐷(𝛽)} for each 𝛽 ∈ 𝐵, and 

2. for each 𝛼 ∈ 𝐴 there exists 𝛽 ∈ 𝐵 such that 𝛼′ ≽ 𝛼 for each 𝛼′ ∈ ⋃ 𝐷(𝛽′)𝛽′≽𝛽  . 

Proposition 3.4. A closed and convex subset 𝐶 of a Banach space 𝑋 is convexly compact if and only if for any net {𝑥𝛼}𝛼∈𝐴 in 𝐶 

there exists a subnet {𝑦𝛽}𝛽∈𝐵  of convex combinations of {𝑥𝛼}𝛼∈𝐴 such that 𝑦𝛽 ⟶  𝑦 for some 𝑦 ∈ 𝐶. 

Definition 3.5. A closed and convex subset 𝐶 of a Banach space 𝑋 is relatively convexly compact if for any net {𝑥𝛼}𝛼∈𝐴 in 𝐶 there 

exists a subnet {𝑦𝛽}𝛽∈𝐵 of convex combinations of  {𝑥𝛼}𝛼∈𝐴 such that 𝑦𝛽 ⟶ 𝑦 for some 𝑦 ∈ 𝑋. 

Remark 3.6.  Every convexly compact set is relatively convexly compact. 
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Definition 3.7.  A random  set 𝐴(𝜔) ⊆ 𝑋 is said to be bounded in probability if   

lim
𝑀⟶∞

sup𝑥∈𝐴(𝜔) ℙ{𝜔: ‖𝑥(𝜔)‖ ≥ 𝑀} = 0. 

 In the following theorem we will deal with the random set with the property that: 

𝑥 ∈ 𝐶(𝜔)  if and only if 𝐸[‖𝑥(𝜔)‖] < ∞. 

Theorem 3.8.  A closed and convex random set 𝐶(𝜔) in 𝑋 is convexly compact if and only if it is bounded in probability. 

Proof. ⇐ Let 𝐶 be a convex, closed and bounded-in-probability subset of 𝑋, and let {𝐹𝛼}𝛼∈𝐴 be a family of closed and convex subsets 

of 𝐶(𝜔) satisfying (3.1). For 𝐷 ∈ 𝐹𝑖𝑛(𝐴) we define  

𝐺𝐷 = {
𝐶(𝜔), 𝐷 = ∅

⋂ 𝐹𝛼α∈D , 𝐷 ≠ ∅
. 

and fix an arbitrary 𝑥𝐷 ∈ 𝐺𝐷. With  𝜙(𝑥(𝜔)) = 1 − exp(−‖𝑥(𝜔)‖), we set 

𝑢𝐷 = sup{𝔼[‖𝜙(𝑔)‖]: 𝑔 ∈ 𝑐𝑜𝑛𝑣{𝑥𝐷′ ∶  𝐷′ ⊇ 𝐷}}, 

so that 0 ≤ 𝑢𝐷 ≤ 1 and 𝑢𝐷1
≥ 𝑢𝐷2

, for 𝐷1 ⊆ 𝐷2. Seen as a net on the directed set (𝐹𝑖𝑛(𝐴), ⊆), {𝑢𝐷}𝐷∈𝐹𝑖𝑛(𝐴) is monotone and 

bounded, and therefore convergent, i.e., 𝑢𝐷 ⟶ 𝑢∞, for some 𝑢∞ ∈ [0, 1]. Moreover, for each 𝐷 ∈ 𝐹𝑖𝑛(𝐴) we can choose 𝑔𝐷 ∈
 𝑐𝑜𝑛𝑣{𝑔𝐷′ ∶ 𝐷 ⊆  𝐷′} so that 

𝑢𝐷 ≥ 𝛾𝐷 ≜ 𝔼[𝜙(‖𝑔𝐷‖)] ≥ 𝑢𝐷 −
1

#𝐷
, 

where #𝐷 denotes the number of elements in 𝐷. Clearly, 𝛾𝐷  ⟶ 𝑢∞. The reader is invited to check that simple analytic properties 

of the function 𝜙 are enough to prove the following statement: 

 for each 𝑀 > 0 there exists 𝜀 = 𝜀(𝑀) > 0, such that 

    if ‖𝑥1 − 𝑥2‖ ≥
1

𝑀
  and 0 ≤ min{‖𝑥1‖, ‖𝑥2‖} ≤ 𝑀, then  

𝜙 (
1

2
‖𝑥1 + 𝑥2‖) ≥

1

2
𝜙(‖𝑥1‖) + 𝜙(‖𝑥2‖) + 𝜀. 

It follows that for any 𝐷1, 𝐷2 ∈  𝐹𝑖𝑛(𝐴) we have 

𝜀ℙ {‖𝑔𝐷1
− 𝑔𝐷2

‖ ≥
1

𝑀
, min{𝑔𝐷1

, 𝑔𝐷2
} ≤ 𝑀} ≤ 𝔼 [𝜙 (

1

2
‖𝑔𝐷1

+ 𝑔𝐷2
‖)] 

                                                                             −
1

2
(𝔼[𝜙(‖𝑔𝐷1

‖)] + 𝔼[𝜙(‖𝑔𝐷2
‖)]). 

The random variable 
1

2
‖𝑔𝐷1

+ 𝑔𝐷2
‖ belongs to 𝑐𝑜𝑛𝑣{𝑓𝐷′: 𝐷′ ⊇ 𝐷1 ∩ 𝐷2}, 

𝔼 [𝜙 (
1

2
‖𝑔𝐷1

+ 𝑔𝐷2
‖)] ≤ 𝑢𝐷1∩𝐷2

. 

Consequently, 

𝜀ℙ {‖𝑔𝐷1
− 𝑔𝐷2

‖ ≥
1

𝑀
, min{𝑔𝐷1

, 𝑔𝐷2
} ≤ 𝑀} ≤ 𝜂𝐷1,𝐷2

 

Where 

𝜂𝐷1,𝐷2
= 𝑢𝐷1∩𝐷2

−
1

2
(𝑢𝐷1

+ 𝑢𝐷2
) +

1

2
(

1

#𝐷1
+

1

#𝐷2
). 
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Thanks to the boundedness in probability of the set 𝐶, for 𝜅 > 0, we can find 𝑀 = 𝑀(𝜅) > 0 such that  

𝑀 > 1/𝜅 and ℙ[𝑓 ≥ 𝑀] < 𝜅/2 

for any 𝑓 ∈ 𝐶. Furthermore, let 𝐷(𝜅) ∈ 𝐹𝑖𝑛(𝐴) be such that 𝑢∞ +  𝜀(𝑀)𝜅/4 ≥ 𝑢𝐷 ≥ 𝑢∞ for all 𝐷 ⊇ 𝐷(𝜅), and #𝐷(𝜅) >
4/(𝜀(𝑀)𝜅). Then, for 𝐷1, 𝐷2 ⊇ 𝐷(𝜅) we have 

ℙ{‖𝑔𝐷1
− 𝑔𝐷2

‖ ≥ 𝜅} ≤ ℙ {‖𝑔𝐷1
− 𝑔𝐷2

‖ ≥
1

𝑀
, min{𝑔𝐷1

, 𝑔𝐷2
} ≤ 𝑀} + ℙ{min{𝑔𝐷1

, 𝑔𝐷2
} ≤ 𝑀}  

≤
1

𝜀(𝑀)
(𝑢𝐷1∩𝐷2

−
1

2
(𝑢𝐷1

+ 𝑢𝐷2
) +

1

2
(

1

#𝐷1
+

1

#𝐷2
)) ≤ 𝜅. 

In other words, {𝑔𝐷}𝐷∈𝐹𝑖𝑛(𝐴) is a Cauchy net in 𝕃+
0  which, by completeness, admits a limit 𝑔∞ ∈ 𝕃+

0 . By construction and convexity 

of the sets 𝐹𝛼 , 𝛼 ∈ 𝐴, we have 𝑔𝐷 ∈  𝐹𝛼 whenever 𝐷 ⊇  {𝛼}. By closedness of  𝐹𝛼, we conclude that 𝑔∞ ∈  𝐹𝛼, and so, 𝑔∞ ∈  ⋂  𝐹𝛼𝛼∈𝐴 .     

⇒  It remains to show that convexly compact sets in 𝕃+
0  are necessarily bounded in probability. Suppose, to the contrary, that 𝐶 ⊆

𝕃+
0  is convexly compact, but not bounded in probability. 

Then, there exists a constant 𝜀 ∈ (0, 1) and a sequence {𝑓𝑛}𝑛∈ℕ in 𝐶 such that 

                                 ℙ{𝑓𝑛 ≥ 𝑛} > 𝜀, for all  𝑛 ∈ ℕ.                                                (3.3) 

By Proposition 3.4, there exists a subnet {𝑔𝛽}𝛽∈𝐵 of convex combinations of  {𝑓𝑛}𝑛∈ℕ which converges to some 𝑔 ∈ 𝐶. In particular, 

for each 𝑛 ∈ ℕ there exists 𝛽𝑛 ∈ 𝐵 such that 𝑔𝛽 can be written as a finite convex combination of the elements of the set {𝑓𝑚: 𝑚 ≥

 𝑛}, for any 𝛽 ≽ 𝛽𝑛. Using (3.1) and Lemma 9.8.6., p. 205 [5], we get the following estimate 

                             ℙ {𝑔𝛽 ≥
𝑛𝜀

2
} >

𝜀

2
, for all 𝛽 ≽ 𝛽𝑛.                                                (3.4) 

Therefore, 

ℙ {𝑔𝛽 ≥
𝑛𝜀

2
} ≥ ℙ {𝑔𝛽 ≥

𝑛𝜀

2
} − ℙ {|𝑔 − 𝑔𝛽| ≥

𝑛𝜀

4
} >

𝜀

2
− ℙ {|𝑔 − 𝑔𝛽| ≥

𝑛𝜀

4
} >

𝜀

4
 , 

for all “large enough” 𝛽 ∈  𝐵. Hence, ℙ{𝑔 = +∞} > 0.  a contradiction with the assumption 𝑔 ∈ 𝐶. 

4. Convexly Compact Dissipative Random Dynamical Systems 

In this section, we  define convex compactness for dissipative RDSs and introduce defrant types of dissipation when the random 

set is convexly compact. Then the relations among this types of dissipativity are discussed. 

Definition 4.1  The RDS (θ, φ) is said to be convexly compact dissipative if for any convexly compact random set D(𝜔) in 𝑋 

there is random set K(𝜔) in X so that  
lim

𝑡⟶+∞
sup𝑥∈𝐷(𝜃−𝑡𝜔) inf𝑦∈𝐾(𝜔)‖𝜑(𝑡, 𝜃−𝑡𝜔)𝑥 − 𝑦‖ = 0 

Definition 4.2  The RDS (θ, φ) is said to be  

(1) point ( 𝒄𝒌 −)dissipative if for every 𝑥 ∈ 𝑋, there is (convexly compact ) random set K(𝜔) in X so that, 

lim
𝑡⟶+∞

inf𝑦∈𝐾(𝜔)‖𝜑(𝑡, 𝜃−𝑡𝜔)𝑥 − 𝑦‖ = 0. 

(2) bounded ( 𝒄𝒌 −)dissipative if for any bounded random set B(𝜔) in X there is (convexly compact) random set K(ω) in X so that  

lim
𝑡⟶+∞

sup𝑥∈𝐵(𝜃−𝑡𝜔) inf𝑦∈𝐾(𝜔)‖𝜑(𝑡, 𝜃−𝑡𝜔)𝑥 − 𝑦‖ = 0.  

Definition 4.3: the RDS (θ,  φ) is said to be 
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1. Locally completely continuous (Locally ( 𝒄𝒌 −) compact)  if for every random variable  𝑝 ∈ 𝑋Ω, there exist a TRV 𝛿 =

𝛿(𝑝, 𝜔) > 0,  𝑙 = 𝑙(𝑝) > 0  such that  𝜑(𝑙, 𝜃−𝑙𝜔)𝑀(𝜃−𝑙𝜔) is precompact, where  

𝑀(𝜔) ≔ 𝐵(𝑝, 𝛿) = {𝑥 ∈ 𝑋: inf𝑦∈𝑝(𝜔)‖𝑥 − 𝑦‖ < 𝛿(𝜔) }. 

2. Weakly ( 𝒄𝒌 −) dissipative whenever  for every t.r.v 𝜀(𝜔) > 0  and every 𝑥 ∈ 𝑋 there exists a nonempty convexly compact 

random set 𝐾(𝜔) ⊆ 𝑋 such that, there exists 𝜏 = 𝜏(𝜀,  𝑥) > 0 for   𝜑(𝜏, 𝜃−𝜏𝜔)𝑥 ∈ 𝐵(𝐾(𝜔), 𝜀(𝜔)). 

In this case, 𝐾(𝜔) will be called a weak ( 𝒄𝒌 −) random attractor.   

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 General Relations Among The Types of Dissipativity  

 

Definition 4.4.  Consider RDS (𝜃, 𝜑). A random set 𝑀(𝜔) is said to be convexly orbitally stable if for any tempered random 

variable  𝜀 and any non-negative number 𝑡, there exists tempered random variable 𝛿 such that  

    inf𝑦∈𝑀(𝜔)‖𝑥 − 𝑦‖ < 𝛿(𝜔) implies  inf𝑦∈𝑀(𝜔)‖𝜑(𝑡, 𝜃−𝑡𝜔)𝑥 − 𝑦‖ < 𝜀(𝜔). 

Definition 4.5.  Let 𝐾(𝜔)  be a convexly compact random set in 𝑋. We will call the set  𝐿X(𝜔) defined by following equality:  

𝐿X(𝜔) ∶= Γ𝐾(𝜔) =∩ {𝜑(𝑡, 𝜃−𝑡𝜔)𝐾(𝜃−𝑡𝜔)|𝑡 ∈ 𝑇, 𝜔 ∈ Ω}          

the random convexly Levinson center  of the convexly compact dissipative RDS (𝜃, 𝜑). 

Theorem 4.6.  Consider the RDS (𝜃, 𝜑)is bounded in probability. The next statements are equivalent for every  random set 

B(𝜔) ⊆ 𝑋:  

Bounded ( 𝐜𝐤 −) dissipative 

 

Weakly( 𝒄𝒌 −)   

dissipative 

 

local( 𝐜𝐤 −)   dissipative 

compact( 𝐜𝐤 −)  dissipative 

 

point( 𝐜𝐤 −)  dissipative 

 

Locally completely 

continuous RDS 
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1. the sequence {𝜑(𝑡𝑘, 𝜃−𝑡𝜔)𝑥𝑘} is random precompact for all sequence 𝑡𝑘 → +∞ and {𝑥𝑘} ⊆ 𝐵(𝜃−𝑡𝜔), then  

2. (a) Γ𝐵(𝜔) ≠ ∅ and  convexly compact.  

            (b) Γ𝐵(𝜔) is invariant, and  

lim
𝑡→+∞

sup𝑥∈𝐵(𝜃−𝑡𝜔)‖𝜑(𝑡, 𝜃−𝑡𝜔)𝑥 − Γ𝐵(𝜔)‖ = 0                    (4.1) 

3.     For some convexly compact random set ∅ ≠ K(𝜔) ⊆ 𝑋 we have  

sup𝑥∈𝐵(𝜃−𝑡𝜔) inf𝑦∈𝐾(𝜔)‖𝜑(𝑡, 𝜃−𝑡𝜔)𝑥 − 𝑦‖ = 0                (4.2) 

Proof: To prove (1) ⇒ (2). Let {𝑥𝑘} ⊆ 𝐵(𝜃−𝑡𝜔) where 𝑡𝑘 → +∞. Then according to (1), the sequence {𝜑(𝑡, 𝜃−𝑡𝜔)𝑥𝑘}  

convergent. Assume 𝑥̅ = lim
𝑡→+∞

𝜑(𝑡𝑘, 𝜃−𝑡𝑘
𝜔)𝑥𝑘.  

Then 𝑥̅ ∈ Γ𝐵(𝜔), so, Γ𝐵(𝜔) is non-empty. Let us show that Γ𝐵(𝜔) is convexly compact. Let 𝜀𝑘 ↓ 0 and {𝑦𝑘} ⊆ Γ𝐵(𝜔), then there is 

𝑥𝑘 ∈ 𝐵(𝜃−𝑡𝜔) and 𝑡𝑘 ≥ k  with ‖𝜑(𝑡𝑘, 𝜃−𝑡𝜔)𝑥𝑘 − Γ𝐵(𝜔)‖< 𝜀𝑘.  

According to condition (1), the sequence { 𝜑(𝑡𝑘, 𝜃−𝑡𝑘
𝜔)𝑥𝑘} is convexly precompact, and since 𝜀𝑘 ↓ 0, so {𝑦𝑘} is convexly 

precompact. Easy to get the foreword invariance of  Γ𝐵(𝜔) from the definition. To show  Γ𝐵(𝜔) to be invariant it is enough to 

prove it is backward  invariant. 𝐿𝑒𝑡 y ∈ Γ𝐵(𝜔) 𝑎𝑛𝑑 𝑡 ∈ 𝑇. Hence 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 {xk} ⊆ 𝐵(𝜃−𝑡𝜔) 𝑎𝑛𝑑  tk  → +∞ such that  

y = lim
k→+∞

𝜑(𝑡𝑘, 𝜃−𝑡𝑘
𝜔)𝑥𝑘 = lim

k→+∞
 𝜑(𝑡𝑘 − 𝑡 + 𝑡, 𝜃−𝑡𝑘

𝜔)𝑥𝑘  = lim
k→+∞

 𝜑(𝑡𝑘 − 𝑡, 𝜃−𝑡𝑘
𝜔)𝑥𝑘. 

As 𝑡𝑘  −  𝑡 ⟶ +∞, according to condition (1), the sequence { 𝜑(𝑡𝑘 − 𝑡, 𝜃−𝑡𝑘
𝜔)𝑥𝑘} can be considered convergent. Assume 𝑦𝑘 =

lim
𝑘→+∞

𝜑(𝑡𝑘 − 𝑡, 𝜃−𝑡𝑘
𝜔)𝑥𝑘. Then 𝑦 = 𝜑(𝑡, 𝜃−𝑡𝜔)𝑦𝑘  and   𝑦𝑡 ∈ Γ𝐵(𝜔), i.e.,               𝑦 ∈ 𝜑(𝑡, 𝜃−𝑡𝜔)Γ𝐵(𝜔). The invariance of  

Γ𝐵(𝜔) is proved at the same way. Now 

to prove (4.1) fulfill. Assume that (3.1) is invalid, then for some  ε0 > 0  , 𝑡𝑘  →  +∞, 𝑎𝑛𝑑 𝑥𝑘 ∈ B  such that 

‖𝜑(𝑡𝑘, 𝜃−𝑡𝑘
𝜔)𝑥𝑘 − Γ𝐵(𝜔)‖ ≥ ε0                                       

According to condition (2), the sequence { 𝜑(𝑡𝑘, 𝜃−𝑡𝑘
𝜔)𝑥𝑘} convergent. Let  𝑦 = lim

𝑡→+∞
 𝜑(𝑡𝑘, 𝜃−𝑡𝑘

𝜔)𝑥𝑘. Then 𝑦 ∈ Γ𝐵(𝜔).  Take  

𝑘 ⟶ +∞  in (4.2), we get  𝑦 ∉ Γ𝐵(𝜔). This a contradiction and this end the proof of (1) ⇒(2).  

It is evident that (2) ⇒ (3) and (3) ⇒ (1). 

Corollary 4.7.  Let 𝑀(𝜔) ⊆ 𝑋 be nonempty  random set and γ𝑀
𝑡 (𝜔)  relatively convexly compact. We have Γ𝑀(𝜔) ≠ ∅ , invariant 

and convexly compact, and 

lim
𝑡→+∞

sup𝑥∈𝑀(𝜃−𝑡𝜔) inf𝑦∈Γ𝑀(𝜔)‖𝜑(𝑡, 𝜃−𝑡𝜔)𝑥 − 𝑦‖ = 0.     

  Proof. The proof  follows directly from above theorem. 

5.  Convexly Compact Dissipativity and Asymptotic Behavior of Stochastic Reaction-Diffusion Systems 

This section presents and analysis a mathematical model for a stochastic reaction-diffusion system. The focus is placed on proving 

the convexly compact dissipativity of the system and establishing the existence of a random attractor. In addition, a numerical 

simulation is provided as evidence of the system's asymptotic behavior. 

5.1  Stochastic Reaction-Diffusion Model 

Consider the stochastic partial differential equation (SPDE): 

 

𝜕𝑢/𝜕𝑡 =  𝐷 𝜕²𝑢/𝜕𝑥² +  𝑢(1 −  𝑢)  +  𝛽 𝑢 𝜉(𝑡, 𝑥), 𝑓𝑜𝑟 𝑥 ∈  [0, 1], 𝑡 >  0, 
with Dirichlet boundary conditions and initial condition 𝑢(0, 𝑥) = 0.5, such that 

- 𝐷 is the diffusion coefficient. 

- 𝑢(1 − 𝑢) is the logistic growth reaction term. 

- 𝛽𝑢 𝜉(𝑡, 𝑥) is the multiplicative stochastic noise. 

 

5.2  Theoretical Analysis and Compact Dissipativity 
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We consider the Hilbert space 𝐻 =  𝐿²([0,1]) and define a random dynamical system (RDS) generated by the SPDE. We aim to 

show that the system has convexly compact dissipativity. 

 

Step 1: Energy Estimate 

Taking the 𝐿² − 𝑛𝑜𝑟𝑚 of the solution and applying Itô’s formula, we obtain: 

𝐸[||𝑢(𝑡)||²] ≤ 𝐸[||𝑢(0)||²] 𝑒{−𝛼𝑡} +  𝐶(𝛽), 
 

where 𝛼 > 0 and 𝐶(𝛽) is a constant depending on the noise intensity. 

Step 2: Weak Compactness 

Although 𝐿² is not strongly compact, bounded sets in 𝐿² are weakly relatively compact due to Banach-Alaoglu theorem. Thus, the 

absorbing set is weakly compact and convex, satisfying convexly compact dissipativity. 

Step 3: Existence of Random Attractor 

By standard theory (Crauel, Flandoli) [4], convexly compact dissipativity and measurability of the RDS guarantee the existence of 

a unique random attractor 𝐴(𝜔) ⊂ 𝐻. 

 

5.3  Numerical Simulation 

We simulate the SPDE using an Euler-Maruyama method over the spatial domain [0,1] and time interval [0,5]. 
The resulting finite difference scheme is: 

𝑢𝑖
{𝑛+1} = 𝑢𝑖

𝑛 + 𝛥𝑡 · [ 𝐷 · (𝑢{𝑖−1}
𝑛 − 2𝑢𝑖

𝑛 + 𝑢{𝑖−1}
𝑛/ (𝛥𝑥)2 + 𝑢𝑖

𝑛(1 − 𝑢𝑖
𝑛)] + √𝛥𝑡  ·  𝛽 𝑢𝑖

𝑛 ·  𝜂𝑖
𝑛  

Where,  

− 𝑢𝑖
𝑛: approximate solution at space point 𝑥𝑖  and time 𝑡𝑛. 

- 𝛥𝑡: time step, 𝛥𝑥: space step 

- 𝐷: diffusion coefficient 

- 𝛽: noise intensity 

- 𝜂𝑖
𝑛 ∼ 𝒩(0,1): standard normal random variable. 

- Boundary condition: 𝑢𝑖
𝑛 = 𝑢𝑁

𝑛 = 0 (Dirichlet) 

- Initial condition: 𝑢𝑖
0 = 0.5  for all 𝑖 

This scheme captures diffusion, nonlinear reaction, and stochastic fluctuations effectively. 

The figure below illustrates the evolution of 𝑢(𝑥, 𝑡) and demonstrates that the solution stabilizes over time. 

This supports the theoretical result of dissipativity. 
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Numerical Simulation of a Stochastic Reaction-Diffusion System 

 

5.4  Conclusion 

We have shown both analytically and numerically that the stochastic reaction-diffusion system exhibits convexly compact 

dissipativity. This ensures the existence of a random attractor and provides a robust framework for understanding the long-term 

behavior of the system under uncertainty. 
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