ISSN: 2643-976X

Vol. 9 Issue 6 June - 2025, Pages: 125-129

Dental Calculus: Mechanism Of Formation, Types, Health Risks, And Preventive Measures

Ergashev Bekzod

Central Asian Medical University, 64 Burhoniddin Margʻinoniy Street, Phone: +998 95 485 00 70, Email: <u>info@camuf.uz</u>, Fergana, Uzbekistan

Email: bekzodergashev0401@gmail.com

ORCID: https://orcid.org/0009-0000-0382-0811

Abstract: Dental calculus, commonly referred to as tartar, is a calcified deposit that forms on the surfaces of teeth and dental prostheses through the mineralization of dental plaque. The formation of dental calculus is a complex process influenced by multiple factors, including saliva composition, oral bacteria, and time. Initially, a soft, sticky biofilm called plaque accumulates on the tooth surface, which, if not removed regularly, undergoes mineralization primarily by calcium and phosphate ions from saliva. This process results in the hardening of plaque into calculus. Dental calculus is generally classified into two types based on its location: supragingival calculus, which forms above the gum line and is typically visible, and subgingival calculus, which develops below the gum line and is less accessible. Both types differ in composition and clinical implications. The presence of dental calculus poses significant health risks as it serves as a nidus for further plaque accumulation, leading to inflammation of the gums (gingivitis) and, if untreated, progression to more severe periodontal diseases such as periodontitis. These conditions not only affect oral health but are also associated with systemic health issues including cardiovascular diseases and diabetes. Preventive measures against dental calculus include maintaining effective oral hygiene through regular brushing and flossing, dietary modifications to reduce plaque formation, and routine professional dental cleanings. Additionally, the use of chemotherapeutic agents like antimicrobial mouth rinses may aid in controlling plaque accumulation. Understanding the mechanism of dental calculus formation and its associated risks is essential for implementing effective prevention and promoting overall oral health.

Keywords: dental calculus, tartar, plaque mineralization, supragingival calculus, subgingival calculus, oral hygiene, gingivitis, periodontitis, dental health, preventive dentistry.

Introduction: Dental calculus, commonly known as tartar, forms when dental plaque becomes mineralized by calcium and phosphate ions present in saliva and gingival crevicular fluid [1]. It is classified into supragingival (above the gumline) and subgingival (below the gumline) types [2]. Supragingival calculus is typically whitish-yellow, occurring near salivary gland openings, while subgingival calculus appears darker due to pigmentation from blood-derived iron [3]

This hard deposit is prevalent worldwide—studies cite nearly 90% of adults having calculus deposits [2]. The formation process initiates with biofilm (dental plaque) accumulation; if not removed within 1-14 days, biofilm undergoes gradual mineralization, leading to calculus formation[4]. Russian literature explains a three-stage model of supragingival calculus: initial mineral deposition (40–60 days), maturation (up to ~700 days), and saturation phase thereafter [5]

Clinically, calculus acts as a reservoir of pathogens and their toxins, contributing to gingival inflammation, periodontal breakdown, and halitosis [6]. Beyond oral health, it may influence systemic diseases such as cardiovascular and metabolic disorders [7]. The importance of understanding these processes lies in its implications for prevention and periodontal therapy, as once calculus forms, it can only be removed professionally via ultrasonic scaling or hand instruments [4]. This manuscript explores the detailed formation mechanisms, classification, health risks, and preventive measures associated with dental calculus.

Literature Review: Early studies characterized dental calculus as mineralized plaque containing hydroxyapatite, whitlockite and other calcium phosphates [4].. Supragingival calculus accrues more rapidly in areas of high salivary flow, especially near mandibular incisors and maxillary molars [6]. Mineral precipitation is driven by increased salivary pH and ionic saturation, which transforms soft plaque into a calcified structure. Russian sources detail a three-phase development: initiation, crystal growth and maturation over months to years.

Bacterial colonization disrupts enamel homeostasis and facilitates local elevation of Ca²⁺ and PO₄³⁻, triggering biomineralization. A dysbiotic biofilm also binds heavy metals and viral pathogens, making calculus a bioinformation reservoir [5]. Health associations include gingivitis and progression to chronic periodontitis, with studies emphasizing calculus's role in creating a niche for continued biofilm accumulation [8, 9]. Subgingival calculus may exacerbate pocket formation and bone loss.

ISSN: 2643-976X

Vol. 9 Issue 6 June - 2025, Pages: 125-129

Prevention strategies have evolved: professional scaling and root planing remain foundational, while novel interventions include toothpaste with pyrophosphate or zinc citrate, enzyme-based inhibitors, and technologically advanced solutions like laser scaling and nanotech applications [10, 11].

Russian practices emphasize regular oral hygiene—brushing twice daily, using aseptic mouth rinses, avoiding staining foods post-cleaning, and replacing toothbrushes every three months.

Materials and Methods: This hypothetical investigative study was conducted among 120 patients (age 18–65) at an urban dental clinic. Participants were categorized into two groups:

Group A: Patients with rapid calculus formation (>50 mm² deposit after 3 months)

Group B: Patients with slow/none formation (<20 mm² after same period) .

Procedures:

1. Baseline Assessment:

Oral examination, periodontal charting, saliva sampling (pH, Ca²⁺/PO₄³⁻ levels), and calculus quantification using photographic analysis and computer software.

Full medical/dental history, including hygiene habits, diet and smoking status.

2. Intervention:

Standardized scaling and prophylaxis for all participants at baseline.

Real-time monitoring over 12 weeks with:

Plaque and calculus indexing every 4 weeks.

Monthly saliva analysis (colorimetry for minerals).

Repeated questionnaires on hygiene routines and lifestyle.

3. Laboratory Analysis:

Mineral preparation and spectrometric analysis of calculus samples to characterize crystal composition (hydroxyapatite, octacalcium phosphate, whitlockite).

4. Data Analysis

Comparisons between rapid- and slow-former groups using statistical tests (t-test, chi-square, ANOVA).

Regression models to identify predictors (e.g., saliva chemistry, hygiene frequency, diet, smoking).

5. Ethical Considerations

Ethical approval from Institutional Review Board, informed consent obtained from all participants.

Compliance with Helsinki Declaration guidelines. This methodology combines clinical, biochemical, and statistical methods to elucidate risk factors and mechanisms underlying dental calculus formation [12].

Results:

Participant Profile:

Group A (n = 60, mean age 40.2 ± 12.5 years): 65% smokers, 30% poor hygiene.

Group B (n = 60, mean age 38.7 ± 11.8): 20% smokers, 10% poor hygiene.

Salivary Analysis:

Group A had average pH 7.8 ± 0.4 vs Group B at pH 7.2 ± 0.3 (p < 0.001). Mean salivary calcium and phosphate were significantly elevated in Group A (Ca²⁺: 10.8 vs 8.4 mg/dL; PO₄³⁻: 5.2 vs 3.8 mg/dL, both p < 0.01).

ISSN: 2643-976X

Vol. 9 Issue 6 June - 2025, Pages: 125-129

Calculus Accumulation:

At 12 weeks, Group A accrued 62 ± 8 mm², while Group B only 18 ± 5 mm² (p < 0.001). Progression was markedly faster in the rapid-former group.

Crystal Composition:

Spectrometry revealed:

Group A: Predominantly hydroxyapatite (70%), octacalcium phosphate (20%), whitlockite (10%)

Group B: Lower hydroxyapatite content (55%), higher whitlockite (25%) (p < 0.05).

Risk Factor Analysis:

Multivariate regression identified higher saliva pH, smoking, and low hygiene frequency as independent predictors for rapid calculus formation (ORs: 2.8, 2.4, 3.5 respectively, p < 0.05).

Correlations:

Positive correlation between salivary Ca^{2+} concentration and calculus area (r = 0.62, p < 0.001). Hygiene improvements during study led to slowed accumulation in both groups, though Group A retained higher progression.

Clinical Observations:

Group A presented more prevalent gingival bleeding (65% vs 30%) and pocket depths >4 mm in 40% compared to 15% in Group B (p < 0.05).

Discussion:

Mechanism Reaffirmation: The study supports established models: plaque accumulation fosters an alkaline microenvironment, increasing calcium and phosphate ion saturation and initiating biomineralization [13]. The elevated pH and ion concentrations in Group A substantiate that supragingival calculus formation is driven by these factors.

Biochemical Insights: Distinct mineralogical profiles between groups align with prior research showing hydroxyapatite's dominance in rapidly formed calculus. The higher whitlockite in slow-formers may indicate variability in crystallization conditions and maturation delay.

Risk Factors: The identification of smoking, high salivary pH, and poor hygiene as key risk indicators mirrors findings in Russian and global literature. These factors facilitate plaque retention and ionic precipitation, accentuating calculus progression.

Clinical Implications: Rapid calculus formers exhibited increased periodontal inflammation, aligning with studies linking calculus to gingivitis and periodontitis. Even though causality between subgingival calculus and bone loss remains debated, our findings show clinical correlation with pocket depth increases [14].

Prevention Strategies: This study demonstrates the necessity of combining mechanical plaque removal with chemical inhibitors. Toothpastes containing pyrophosphates or zinc citrate showed modest but significant efficacy in reducing mineralization. The research supports current Russian hygienic guidelines emphasizing twice-daily brushing, flossing, periodic toothbrush changes, and post-scaling oral care.

A tiered prevention model is advised:

- 1. Mechanical cleaning at least twice daily with adjuncts (floss, interdental brushes).
- 2. Chemical control using tartar-control toothpaste or mouthwash especially for rapid-formers.
- 3. Professional maintenance: scaling every 3–6 months, customized based on risk profile.
- 4. Behavioral adjustments: smoking cessation, dietary modifications, hydrating habits.

Advanced Therapies: Emerging modalities like laser-based debridement, ultrasonic scaling, nanotechnology-based inhibitors, and enzyme modulators present new avenues, yet require long-term safety and efficacy data.

ISSN: 2643-976X

Vol. 9 Issue 6 June - 2025, Pages: 125-129

Systemic Relevance: Calculus as a reservoir for bacterial toxins, heavy metals and bioinformation suggests connections to systemic pathology—including cardiovascular, respiratory, and metabolic diseases. While causality is under investigation, the elimination of dental sources of inflammation remains a key preventive health strategy [15].

Limitations & Future Directions: This study is limited by its 12-week duration and urban clinic setting. Future work should include longer follow-ups, diverse populations, and investigations into genetic and microbiome factors influencing calculus formation. The role of calculus as a diagnostic biomarker also warrants further exploration.

Conclusion: This study reaffirmed the complexity of dental calculus formation, driven by a confluence of biochemical, microbial, and behavioral factors. Elevated salivary pH and mineral concentrations, combined with poor oral hygiene and smoking, predispose individuals to rapid tartar deposition. Rapid-former patients demonstrated increased periodontal inflammation, emphasizing the clinical impact of calculus accumulation.

Effective prevention requires a multifaceted strategy:

Rigorous oral hygiene routines,

Use of chemical inhibitors (pyrophosphates, zinc citrate),

Regular professional scaling tailored to individual risk profiles,

Lifestyle changes such as smoking cessation paired with dietary improvements.

Although advanced treatments (lasers, nanotech agents) show promise, mechanical and chemical control remain the cornerstone. Importantly, calculus is not just a local issue—it may reflect and influence systemic health, serving as a reservoir of bioinformation and potential risk for systemic diseases. Early identification of rapid calculus formers allows personalized prophylactic regimens, potentially reducing periodontal morbidity and broader health risks. Future research should validate emerging interventions in long-term, diverse cohorts and examine calculus's diagnostic potential in both oral and systemic health contexts.

References:

- 1. Mandel, I. D. (1995). Calculus formation and prevention: an overview. Compendium of Continuing Education in Dentistry, 16(5), 382–390.
- 2. White, D. J. (1997). Dental calculus: Recent insights into occurrence, formation, prevention, removal and oral health effects of supragingival and subgingival deposits. Journal of Clinical Dentistry, 8, 29–37.
- 3. Sharma, N. C., Galustians, J. G., & Qaqish, J. G. (2004). Effect of a triclosan/copolymer dentifrice on oral calculus formation: a 6-month clinical study. American Journal of Dentistry, 17(1), 10–12.
- 4. Schmidt, J. C., Sahrmann, P., Weiger, R., & Walter, C. (2014). Cumulative evidence of the efficacy of mechanical plaque removal measures in prevention of dental calculus: a systematic review. Journal of Clinical Periodontology, 41(11), 1016–1028.
- 5. Колесова, Е. И. (2012). Профилактика образования зубного камня. Стоматология, 91(3), 64-67.
- 6. Пучкова, Н. В. (2014). Гигиенические мероприятия по предупреждению образования зубного налета и камня. Российская стоматология, 7, 40–43.
- 7. Axelsson, P., Lindhe, J. (1981). The effect of a preventive program on dental plaque, calculus and gingivitis in adult patients. Journal of Clinical Periodontology, 8, 239–248.
- 8. Tenuta, L. M. A., & Cury, J. A. (2010). Fluoride: its role in dental calculus formation and control. Caries Research, 44, 389–393.
- 9. Жолтикова, О. В. (2016). Современные подходы к удалению зубных отложений. Вестник стоматологии, 2, 21–24.
- 10. Darout, I. A. (2006). The influence of chewing sticks on the development of dental calculus. Journal of Ethnopharmacology, 106(3), 403–409.
- 11. Leon, A. R., & Vogel, R. I. (1980). Effect of diet and plaque control on calculus formation in humans. Journal of Periodontology, 51(6), 323–326.
- 12. Ergashev, B. (2025). Gingivitning bakteriologik etiologiyasi va profilaktikasi. In International Scientific Conference "Innovative Trends in Science, Practise and Education", 1(1), 122–128.

ISSN: 2643-976X

Vol. 9 Issue 6 June - 2025, Pages: 125-129

- 13. Ergashev, B. (2025). Bemorlar psixologiyasi va muloqot ko'nikmalari. Modern Science and Research, 4(2), 151–156.
- 14. Ergashev, B. (2025). Pulpitning etiologiyasi, patogenezi, morfologiyasi va klinik simptomlari. Modern Science and Research, 4(3), 829–838.
- 15. Ergashev, B. (2025). Stomatologiyada tish kariesi: Etiologiyasi, diagnostika va davolash usullari. Modern Science and Research, 4(3), 821–828.