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Abstract: The global cultivation of grapes reaches approximately 77.8 million tons annually, according to the International
Organization of Vine and Wine. While grapes remain a vital agricultural commodity and dietary staple worldwide, their production
faces serious threats from common diseases like black rot, Esca, and leaf blight. Current disease detection methods in modern
vineyards primarily depend on manual visual inspection, a practice that often delays diagnosis and leads to reduced yields and
compromised fruit quality. The integration of automated detection methods, particularly those based on machine learning, is crucial
for promoting sustainable viticulture. This study leverages the power of deep learning, a subfield of machine learning particularly
adept at interpreting image data. Specifically, we implemented Convolutional Neural Networks (CNNs) to classify images of
grapevine leaves as either healthy or diseased. The models employed included a custom-built baseline CNN and a range of advanced
transfer learning models: DenseNet121, EfficientNetB7, MobileNetV2, ResNet50, and VGG16. While we initially hypothesized that
ResNet50 would vyield the highest accuracy due to its deep architecture, experimental results revealed that EfficientNetB7
outperformed all other models. To further enhance classification performance, we constructed a max-voting ensemble using the top
three performing models. This ensemble approach outmatched the performance of individual models. The final model was deployed
via a web-based interface, enabling vineyard professionals and growers to detect black rot, Esca, leaf blight, or confirm leaf health

by uploading images captured in real-world vineyard environments.

INTRODUCTION

According to the International Organization of Vine and Wine,
global grape production reaches 77.8 million tons annually.
Grapes have played an integral role in human consumption for
centuries, used in various forms such as fresh fruit, wine, and
raisins. However, grapevine production is increasingly
jeopardized by diseases like black rot, Esca, and leaf blight.
These infections not only diminish crop yields but also compel
farmers to rely heavily on costly fungicides.

Black rot, caused by the fungus Guignardia bidwellii, thrives in
warm and humid climates, rendering grapes unmarketable and
earning the title “Achilles’ heel” of grape cultivation in regions
like the Middle East. Esca, a destructive trunk disease often
linked to Phaeoacremonium aleophilum, typically manifests
during the summer months and causes significant economic
losses — in France alone, up to 13% of vineyards are affected
annually, amounting to over 1 billion euros in damages. Leaf
blight, triggered by Xylophilus ampelinus, has been documented
to reduce yields by more than 70% in affected areas.

Traditionally, vineyard diseases are managed through cultural
practices and fungicide applications. Black rot can be controlled
by enhancing ventilation and sanitation within vineyards. Esca,
lacking a definitive chemical cure, necessitates preventive
strategies, while leaf blight is typically managed via fungicide
treatments and moisture regulation. Early and precise disease
identification is essential for limiting fungicide use and
minimizing crop losses.

Conventional methods of disease detection rely on expert visual
inspection, a process limited by subjectivity and the availability
of specialists. This limitation underscores the need for innovative
approaches such as machine learning, particularly deep learning

with Convolutional Neural Networks (CNNs), which offer
promising potential for automated disease diagnosis.

Machine learning, a subset of artificial intelligence, empowers
systems to learn from experience and improve their performance
autonomously. Deep learning, a specialized branch of machine
learning, utilizes neural networks inspired by biological neural
structures to extract patterns and make predictions from complex
datasets. CNNSs, in particular, have proven highly effective in
analyzing visual data.

Dataset Description and Table 1

In contrast to traditional Support Vector Machine (SVM)
approaches, Convolutional Neural Networks (CNNs) are capable
of training on larger datasets, thereby enhancing their ability to
recognize diverse disease patterns with higher accuracy. This
approach aligns with the goals of precision agriculture, which
advocates for the use of technology to optimize crop health and
yield.

In this study, we employed a grapevine leaf image dataset
obtained from kaggle.com, which included four distinct classes:
black rot, Esca, leaf blight, and healthy. The dataset originally
contained unequal numbers of images per class. To maintain
balance during training, we selected an equal number of images
for each class and applied data augmentation to generate a
consistent number of training samples across all categories. Each
class ultimately contained an equal number of original and
augmented images to ensure uniform training and improve
model generalization.
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Table 1. Number of Imaaes per Disease Class in the Dataset

Tringimages | Training mages (Used

(g FomOrgna | Augnered Tl Tang e S
Blackrot | 1888 1636 13 300 477 un
Esca _ 100 165 134 00 48) w0
Leaf bight | 172 1636 13 300 43 wY
bty | w68 w0 W
W nn M Sm oW w6

These balanced datasets facilitated fair comparisons among
models during training and evaluation. Data augmentation
techniques such as zooming, rotating, altering brightness, and
shearing were used to simulate a wide range of real-world image
conditions. These transformations helped improve the model’s
robustness to variations in leaf appearance due to environmental
conditions or image quality.

In agricultural research, Support Vector Machines (SVMs) have
been used to detect grapevine diseases. Although effective in
distinguishing healthy from diseased leaves, these models were
constrained to binary classification and trained on a relatively
small dataset of 250 diseased and 400 total leaf images, limiting
their practical application for farmers needing to differentiate
between multiple diseases.

In contrast, CNNs can be trained on large-scale image datasets,
enabling multi-class classification with higher accuracy. This
methodology aligns with the principles of precision agriculture,
which leverages technology to enhance crop monitoring and
productivity. Furthermore, transfer learning — the process of
adapting pre-trained networks to new tasks — has expanded the
capabilities of deep learning in agriculture. State-of-the-art
models such as DenseNet, EfficientNet, MobileNet, ResNet, and
VGG, originally designed for general image recognition, have
been successfully repurposed for disease detection in crops. The
max-voting ensemble approach, which aggregates predictions
from multiple models to improve accuracy, has also emerged as
a powerful technique in this domain.

RESULTS

The grapevine dataset comprised images of leaves classified into
four categories: black rot, Esca, leaf blight, and healthy (Figure
1). To enhance model robustness and prevent overfitting, various
data augmentation techniques were applied. These included
adjustments in zoom, rotation, brightness, and shearing, which
allowed the models to generalize better to unseen, real-world
images.

Our initial evaluation focused on comparing the classification
accuracies of the different CNN architectures. Among all models
tested, EfficientNetB7, ResNet50, and the baseline CNN
demonstrated the highest accuracy, achieving 99.6%, 99.2%, and
99.1%, respectively (Figure 2A). These three models were
selected to form the foundation of a max-voting ensemble. The

remaining models—VGG16, DenseNet121, and
MobileNetVV2—achieved accuracies of 98.3%, 96.7%, and
94.3%, respectively.

To gain further insights into the models’ behavior, we
constructed confusion matrices for each CNN model (Figure
2B). These matrices revealed that the most common
classification errors occurred between black rot and Esca images.
Notably, models such as DenseNet121, EfficientNetB7,
ResNet50, and VGG16 frequently misclassified these two
classes, likely due to their visual similarity in spot patterns and
shapes.

To understand the source of misclassifications, we analyzed error
visualizations from the EfficientNetB7 model. The analysis
showed that some leaf images displayed features that were nearly
indistinguishable between two disease classes, contributing to
the difficulty in accurate classification.

We also evaluated the learning behavior of the models by
plotting training and validation accuracy curves (Figure 3A).
These graphs indicated that the training accuracy was generally
higher than the validation accuracy, which is expected. However,
the baseline CNN exhibited notable fluctuations in its validation
accuracy, suggesting potential overfitting during training.

Further, we analyzed the relationship between model weight size
and validation accuracy by plotting their correlation (Figure 3B).
The results indicated a strong positive correlation—models with
larger weight files tended to achieve higher accuracy. This trend
underscores the trade-off between model complexity and
performance.

We then deployed the three top-performing models—
EfficientNetB7, ResNet50, and baseline CNN—in a max-voting
ensemble. This ensemble aggregated the predictions of each
model and selected the final label based on the majority vote.
The ensemble demonstrated outstanding performance with a
classification accuracy of 99.8%. It misclassified only four
images: two black rot leaves were predicted as Esca, and two
Esca leaves were classified as black rot (Figure 4).

To assess the efficiency of the ensemble model, we recorded
inference times with and without a GPU. With GPU acceleration,
the average time to classify a single image was 12.17
milliseconds. Without a GPU, the time increased significantly to
383 milliseconds. This clearly highlights the role of hardware in
improving the speed of deep learning inference tasks.

DISCUSSION

This study demonstrated that both EfficientNetB7 and ResNet50
are highly effective in the classification of grapevine leaf
diseases. While we initially hypothesized that ResNet50 would
outperform the other models due to its deep residual architecture,
EfficientNetB7 ultimately proved to be the most accurate,
achieving a classification accuracy of 99.6%. Its ability to scale
efficiently and minimize parameter count contributed
significantly to its superior performance across various image
conditions.
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The utilization of ensemble methods further elevated
classification accuracy. The max-voting ensemble, combining
EfficientNetB7, ResNet50, and the baseline CNN, achieved an
impressive 99.8% accuracy—surpassing the results of each
individual model. This ensemble approach leveraged the
complementary strengths of each model, improving robustness
and reducing individual model biases.

An analysis of the training and validation accuracy curves
(Figure 3A) revealed expected trends. Training accuracies were
generally higher than validation accuracies. However, the
baseline CNN exhibited erratic validation accuracy, indicating
susceptibility to overfitting. This instability was not observed in
the transfer learning models, which showed consistent and stable
learning behavior across epochs.

The discrepancy in validation accuracy between the baseline
CNN and transfer learning models reflects differences in
architectural robustness. The transfer learning models, pre-
trained on large-scale image datasets and adapted to grapevine
disease classification, showed superior generalization
capabilities. These models were not only more consistent but
also more reliable in maintaining accuracy during validation.

Data augmentation played a pivotal role in boosting
performance, particularly for lower-accuracy models such as
MobileNetV2, DenseNetl21, and VGG16. These models
exhibited improved generalization after being trained on
augmented datasets, indicating that they initially struggled with
overfitting.  In  contrast,  top-performing  models—
EfficientNetB7, ResNet50, and the baseline CNN—showed only
marginal improvements, highlighting their inherent robustness.

The relationship between model size and performance was also
explored (Figure 3B). Our findings revealed a positive
correlation between model weight size and accuracy, particularly
among models with sizes below 150 megabytes. Beyond this
threshold, however, gains in accuracy became marginal. This
diminishing returns effect suggests that excessively large models
may not yield proportional performance improvements and
could be prone to overfitting or computational inefficiency.

These resultsu  nderscore a critical balance between model
complexity and deployability in real-world agricultural
applications. While larger models offer increased accuracy, they
may not be feasible for deployment in resource-constrained
environments. Thus, selecting models that offer both high
performance and computational efficiency is essential for
practical field use.

Furthermore, inference speed is a significant factor in the real-
world usability of deep learning models. With GPU support, the
ensemble model achieved an average inference time of just 12.17
milliseconds per image. Without GPU acceleration, inference
time rose to 383 milliseconds. This stark contrast emphasizes the
need to optimize models for faster performance, especially in
settings where high-end hardware is not available.

To address these constraints in future work, we propose two
strategies: model pruning and depthwise separable
convolutions. Model pruning involves removing redundant
parameters to streamline the network without compromising
accuracy, while depthwise separable convolutions decompose
standard convolutions into more efficient operations,
significantly reducing computational overhead. Although these
methods may introduce trade-offs in accuracy, they present
promising avenues for improving inference speed and enabling
deployment on lower-end devices

In this study, we learned that EfficientNetB7 and ResNet50
worked well individually for detecting diseases in grapevine
plants. We hypothesized that ResNet50 would be the most
accurate as it allowed deep networks to train with high accuracy.
While ResNet50 performed very well with 99.2% accuracy,
EfficientNetB7 was even more accurate with 99.6% accuracy.
EfficientNetB7, with its ability to train efficiently, easily adapted
to a wide variety of datasets, and massively reduced the number
of parameters in a model, outperforming all other models.
Moreover, ensemble methods such as maxvoting enabled us to
achieve 99.8% accuracy on testing data with better results than
any single transfer learning CNN model.

From the training and validation accuracy curves (Figure 3A),
we noticed that the training accuracy is higher than the validation
accuracy. This made sense intuitively. However, we noticed that
the baseline CNN’s validation accuracy during training was
inconsistent. This hinted that the model might have overfitted the
training data. The rest of the line graphs (Figure 3A) had no
issues.

The validation accuracy curve of the baseline CNN model
highlighted that simpler model architectures could achieve high
accuracy but might exhibit variability across epochs due to
overfitting to the training dataset. In contrast, the five transfer
learning CNN models, which were derived from the TensorFlow
library (an open-source software library developed by the
Google Brain team for machine learning and deep neural
network research) and not from the baseline CNN model,
demonstrated more consistent validation accuracies. These
models were carefully modified to accommodate the grapevine
disease detection dataset, ensuring their performance metrics are
distinct and independent from those of the baseline CNN model.
The robust architectures of these transfer learning models, which
had been pre-trained on large and diverse datasets, contributed to
their stability and reliability in validation accuracy, underscoring
their effectiveness for this application.

In this study, data augmentation improved the performance of
lower-accuracy models, such as MobileNetV2, DenseNet121,
and VGG16, suggesting these models initially suffered from
overfitting and benefited from the more varied training
examples. Conversely, the higher-performing models -
EfficientNetB7, ResNet50, and the baseline CNN — showed only
a slight increase in accuracy with augmented
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Figure 1: Examples of images showing grapevine leaves that are infected with black rot, Esca, leaf blight, or are healthy.
There are 2 images for each class of grapevine leave diseases that are photographed on a plain neutral colored background, one at a
time.

Data, reflecting their inherent robustness and effective generalization from the training set. These observations highlighted the role
of data augmentation in boosting model performance, especially by mitigating overfitting in models that were less optimized.

The correlation between model size and accuracy (Figure 3B) presented a nuanced insight into the effectiveness of different models.
The observed trend indicated that larger models generally achieve higher accuracy. We could attribute this correlation to several
factors that impact a model’s size, including the depth and number of layers, the complexity of the network architecture, and the
volume of parameters and weights that the model must learn during training. Larger models like EfficientNetB7 and ResNet50,
which had more extensive and intricate architectures, were capable of learning more complex features and patterns in the data,
contributing to their higher accuracy rates.

However, the relationship between model size and accuracy was not linear. As indicated in our results, beyond a threshold of around
150 megabytes, the improvements

=1

i Figure 2: Prediction accuracies and confusion matrices of the models tested.(A) Prediction accuracy on the grapevine leaves
testingdata. The bar graph shows the accuracies of six different models: Baseline CNN, DenseNet121, EfficientNetB?7,
MobileNetV2, ResNet50, and VGG16. The accuracies ranged from 94.3% to 99.6%. The models are sorted in decreasing order
based on their respective accuracy. (B) Six confusion matrices depicting errors of the models tested. For each confusion matrix,
the x-axis has the predicted disease while the y-axis has the actual disease. The number of testing images that fall into a given
category is written inside each square. The squares that are colored orange represent a large number of data points and black
represent a small number of data points.
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in accuracy became marginal (Figure 3B), which was particularly revealing. This plateau effect suggested that while more complex
models with a greater number of parameters could capture nuanced patterns in data more effectively, there was a point beyond which
additional complexity did not yield significant benefits. This could be due to overfitting, where the model became so well-tuned to
the training data that it failed to generalize effectively to new, unseen data. It

also reflected the principle of diminishing returns in machine learning, where the cost (in terms of computational resources and time)
of increasing model complexity did not always translate into proportional improvements in performance. Our findings highlighted
that the relationship between model size and accuracy significantly affected the feasibility of deploying machine learning models in
real-world agricultural contexts. Our research goals were to develop models
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Figure 4: Classification metrics, confusion matrix and error visualization for max-voting ensemble deep learning model. (A)
Classification metrics for the max-voting ensemble including precision, recall, f1-score, accuracy, macro average, and weighted
average. (B) A confusion matrix depicting the errors made by the max-voting ensemble. The x-axis has the predicted disease while
the y-axis has the actual disease. The number of testing images that fall into a given category is written inside each square. These
squares are colored orange representing a large number of data points and black representing a small number of data points. (C) All
of the grapevine leaf images that were misclassified by the max-voting ensemble are depicted. The predicted label and true label are
shown above the image. The numbers 0, 1, 2, and 3 refer to black rot, Esca, leaf blight, and healthy respectively. Out of the 4
misclassified images, 2 black rot-affected images were predicted as Esca, and another 2 Esca-affected images were classified as
black rot

Figure 3: Training and validation accuracies of different models
as
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well as the relationship between model size and accuracy. (A) Six line graphs depicting the training and validation accuracies of
all models tested. The x-axis represents the epoch number, and the y-axis represents the accuracy. The blue line represents the
training accuracy, and the orange line represents the validation accuracy. (B) A line graph depicting the positive correlation between
the size of the model’s weights in megabytes and the accuracy (in %) on testing data.

that not only exhibited high accuracy but also maintained computational efficiency for ease of use in the field. This balance ensured
that the models were sophisticated enough to detect subtle indicators of disease effectively yet streamlined enough to be deployed
on platforms with limited computational power, which was often the case in agricultural environments. The findings from this study
would inform the selection of future models, guiding a targeted approach that prioritized both precision and practicality for end-
users such as vineyard operators.

In this study, it took the max-voting ensemble 12.17 milliseconds to predict a single image with a GPU. However, most farmers
lack access to GPUs. Without one, it took the max-voting ensemble 383 milliseconds to predict a single image. In future, this time
could be reduced to apply this technology effectively in rural areas with poor farmers. To enhance model inference time in future
work, we plan to implement two key strategies. The first is model pruning, a process where redundant network parameters are
identified and removed. This approach aims to streamline the model without sacrificing its original accuracy, by focusing on the
most crucial aspects of the network. The second strategy involves the use of depthwise separable convolutions. This technique
separates the spatial and depth convolutions, significantly reducing the computational load and thus speeding up the inference
process. However, there is some uncertainty regarding how this change might affect the model’s ability to accurately capture complex
features, and consequently, its overall accuracy.

In summary, this research successfully demonstrated the superior performance of EfficientNetB7 and ResNet50 in detecting
grapevine diseases, with data augmentation proving particularly beneficial for models susceptible to overfitting. While ensembling
methods like max-voting significantly enhanced accuracy, the study also revealed a diminishing returns effect in the relationship
between model size and accuracy, guiding practical model deployment in agriculture. Future work aims to reduce inference time
through model pruning and depthwise separable convolutions, crucial for application in resource-constrained settings. Enhancing
the website for bulk processing and considering a mobile app for local processing present further opportunities to increase the utility
and accessibility of this technology in agricultural practices.

MATERIALS AND METHODS
Our study involved seven major steps that included data collection, exploratory data analysis, data preprocessing and augmentation,
baseline CNN model development, transfer learning, model evaluation and website deployment.

Data Collection

To find a suitable dataset, we navigated to kaggle.com/ datasets to look for a dataset with at least three different classes, a healthy
class, and at least 500 images per class. We found a satisfactory dataset, titled “Grape_disease,” that was published by the kaggle.com
user “Pushpa Lama” on July 1, 2021, It contained four classes (black rot, Esca, leaf blight, and healthy) with about 2,000 training
images and about 500 testing images in each class (Table 1). These original images were stored as Joint Photographic Experts Group
(JPG) files with a size of

256 pixels by 256 pixels. Consequently, the aspect ratio was 1:1. In total, the original dataset had 7,222 training images and 1,805
testing images (Table 1). Afterward, we created a kaggle.com notebook and added the dataset to the input directory.

Exploratory Data Analysis

To get a better feel for the data, we read all the image files and stored them in a dataframe. Next, we plotted a bar graph and pie
chart showing the image distribution across classes. We found that black rot, Esca, leaf blight, and healthy images were 26.0%,
26.4%, 24.2%, and 23.3%, respectively, of the total images in the original dataset. In addition, eight images for each class were
plotted on a grid. It appeared that leaves were taken off grapevines and photographed with a plain background.

Data Preprocessing and Augmentation

Next, we performed data preprocessing. Resizing the images to 224 pixels by 224 pixels allowed us to utilize a variety of transfer
learning models in the subsequent steps. Additionally, we normalized the images by dividing all pixel values by 255, a common
practice in image processing. This step scaled the pixel values to a range of 0 to 1, facilitating the model’s learning process by
ensuring numerical stability and speeding up convergence during training. Normalizing the data in this way helped to achieve faster,
more efficient training by reducing the computational burden on the model. We decided to perform data augmentation to ensure that
the final model could handle low-resolution images as well as images with natural backgrounds. We did the augmentations (Figures
5A — D), randomly on the entire dataset by techniques like zooming in or out of the image, flipping the image horizontally or
vertically, rotating the image, increasing or decreasing the brightness of the image, and shearing the image.
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Figure 6: The baseline CNN model architecture. The input layer is denoted with the letter A and has dimensions 224x224x3. The
convolutional layers with letters B, C, D, E, F, and G have dimensions 112x112x32, 56x56x32, 28x28x32, 14x14x32, 7x7x32, and
3x3x32 respectively. The kernel size is shown underneath the visual representation of the corresponding convolutional layer. All
convolutional layers are shown along with the kernel size. The maxpooling from each convolutional layer to the next causes the
width and height to halve. Finally, there are three hidden layers with 288, 512, and 512 nodes respectively and an output layer with
4 nodes. These layers are represented with a column of small orange boxes.

Finally, we combined 1,656 images from the original dataset with 1,344 augmented images for each class. Please note that we used
1,656 training images for each class as the original dataset had a different number of training images in each class, and we wanted
to ensure the models were trained equally for each class. This led to each class having 3,000 images, with 12,000 images in total
(Table 1). We published this newly created dataset on kaggle.com for others to use. Augmented images were used to help the model
generalize, but they were not included in the testing data so the model could be evaluated on the real images present in the dataset.

Baseline CNN Model

First, we created the model architecture (Figure 6) and built it as a “sequential model” in TensorFlow. Next, we added two fully
connected dense layers with the relu activation function and an output layer with four output neurons at the top of the model (Figure
6 and Appendix). At this stage, we checked for overfitting and underfitting using training and validation loss. Additionally, we
evaluated the model’s performance using validation accuracy, a confusion matrix, and a classification report. The images that the
model predicted inaccurately were visualized to understand the model’s pitfalls better. We used Python Version 3.0.12 for
programming, Jupyter Notebook Version 7.0.6 for development, and various Python libraries including TensorFlow, seaborn, scikit-
learn, pandas, numpy and matplotlib for CNN modeling (Appendix).

Transfer Learning

The five CNN models tested using transfer learning were DenseNet121, EfficientNetB7, MobileNetV2, ResNet50, and VGG16. For
each transfer learning model, we imported its pre-trained weights from ImageNet. Next, we created a sequential model containing
the transfer learning model. We then added a GlobalAvgPool2D layer to the sequential model. By calculating the mean of the input’s
width and height, this layer performed downsampling. It reduced the total number of parameters and the chance of overfitting.
Finally, we added a dense layer with a softmax activation. By doing this, raw neural network outputs were converted into probability
vectors. Next, we set an EarlyStopping callback that stopped training if validation accuracy did not improve after eight epochs. In
addition, we implemented a ModelCheckpoint callback that saved the model with the lowest validation loss. We compiled the
sequential model with the Adam optimizer. Finally, we trained each model for 25 epochs, aligning with established conventions in
machine learning. This duration struck a balance between undertraining and overfitting: too few epochs might prevent the model
from fully learning from the dataset, while too many could cause the model to learn the training data too well, failing to generalize
to new data.

Model Evaluation

We determined the most suitable CNN models for the max-voting ensemble using validation accuracies, confusion matrices, and
error visualizations. In a max-voting ensemble, each base model made a prediction on an image. Each prediction counted as a vote,
and the disease with the most votes was the final prediction. If there was a tie, the final prediction was decided by the highest-scoring
base model. We evaluated the ensemble using accuracy score, confusion matrix, classification metrics, and error visualization. We
also
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Figure 7: Grapevine disease detection website in action. A grapevine leaf that is affected with black rot has been uploaded. The
user learned that the leaf is infected with black rot with 0.987 probability.

found out how long the ensemble took to classify a single image with and without a GPU. After that, we downloaded the HDF5 file

containing the most accurate models’ weights.
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