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Abstract: The global cultivation of grapes reaches approximately 77.8 million tons annually, according to the International 

Organization of Vine and Wine. While grapes remain a vital agricultural commodity and dietary staple worldwide, their production 

faces serious threats from common diseases like black rot, Esca, and leaf blight. Current disease detection methods in modern 

vineyards primarily depend on manual visual inspection, a practice that often delays diagnosis and leads to reduced yields and 

compromised fruit quality. The integration of automated detection methods, particularly those based on machine learning, is crucial 

for promoting sustainable viticulture. This study leverages the power of deep learning, a subfield of machine learning particularly 

adept at interpreting image data. Specifically, we implemented Convolutional Neural Networks (CNNs) to classify images of 

grapevine leaves as either healthy or diseased. The models employed included a custom-built baseline CNN and a range of advanced 

transfer learning models: DenseNet121, EfficientNetB7, MobileNetV2, ResNet50, and VGG16. While we initially hypothesized that 

ResNet50 would yield the highest accuracy due to its deep architecture, experimental results revealed that EfficientNetB7 

outperformed all other models. To further enhance classification performance, we constructed a max-voting ensemble using the top 

three performing models. This ensemble approach outmatched the performance of individual models. The final model was deployed 

via a web-based interface, enabling vineyard professionals and growers to detect black rot, Esca, leaf blight, or confirm leaf health 

by uploading images captured in real-world vineyard environments. 

 

INTRODUCTION  

According to the International Organization of Vine and Wine, 

global grape production reaches 77.8 million tons annually. 

Grapes have played an integral role in human consumption for 

centuries, used in various forms such as fresh fruit, wine, and 

raisins. However, grapevine production is increasingly 

jeopardized by diseases like black rot, Esca, and leaf blight. 

These infections not only diminish crop yields but also compel 

farmers to rely heavily on costly fungicides. 

Black rot, caused by the fungus Guignardia bidwellii, thrives in 

warm and humid climates, rendering grapes unmarketable and 

earning the title “Achilles’ heel” of grape cultivation in regions 

like the Middle East. Esca, a destructive trunk disease often 

linked to Phaeoacremonium aleophilum, typically manifests 

during the summer months and causes significant economic 

losses — in France alone, up to 13% of vineyards are affected 

annually, amounting to over 1 billion euros in damages. Leaf 

blight, triggered by Xylophilus ampelinus, has been documented 

to reduce yields by more than 70% in affected areas. 

Traditionally, vineyard diseases are managed through cultural 

practices and fungicide applications. Black rot can be controlled 

by enhancing ventilation and sanitation within vineyards. Esca, 

lacking a definitive chemical cure, necessitates preventive 

strategies, while leaf blight is typically managed via fungicide 

treatments and moisture regulation. Early and precise disease 

identification is essential for limiting fungicide use and 

minimizing crop losses. 

Conventional methods of disease detection rely on expert visual 

inspection, a process limited by subjectivity and the availability 

of specialists. This limitation underscores the need for innovative 

approaches such as machine learning, particularly deep learning 

with Convolutional Neural Networks (CNNs), which offer 

promising potential for automated disease diagnosis. 

Machine learning, a subset of artificial intelligence, empowers 

systems to learn from experience and improve their performance 

autonomously. Deep learning, a specialized branch of machine 

learning, utilizes neural networks inspired by biological neural 

structures to extract patterns and make predictions from complex 

datasets. CNNs, in particular, have proven highly effective in 

analyzing visual data. 

Dataset Description and Table 1  

In contrast to traditional Support Vector Machine (SVM) 

approaches, Convolutional Neural Networks (CNNs) are capable 

of training on larger datasets, thereby enhancing their ability to 

recognize diverse disease patterns with higher accuracy. This 

approach aligns with the goals of precision agriculture, which 

advocates for the use of technology to optimize crop health and 

yield. 

In this study, we employed a grapevine leaf image dataset 

obtained from kaggle.com, which included four distinct classes: 

black rot, Esca, leaf blight, and healthy. The dataset originally 

contained unequal numbers of images per class. To maintain 

balance during training, we selected an equal number of images 

for each class and applied data augmentation to generate a 

consistent number of training samples across all categories. Each 

class ultimately contained an equal number of original and 

augmented images to ensure uniform training and improve 

model generalization. 
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Table 1. Number of Images per Disease Class in the Dataset

 

 

These balanced datasets facilitated fair comparisons among 

models during training and evaluation. Data augmentation 

techniques such as zooming, rotating, altering brightness, and 

shearing were used to simulate a wide range of real-world image 

conditions. These transformations helped improve the model’s 

robustness to variations in leaf appearance due to environmental 

conditions or image quality. 

 

In agricultural research, Support Vector Machines (SVMs) have 

been used to detect grapevine diseases. Although effective in 

distinguishing healthy from diseased leaves, these models were 

constrained to binary classification and trained on a relatively 

small dataset of 250 diseased and 400 total leaf images, limiting 

their practical application for farmers needing to differentiate 

between multiple diseases. 

In contrast, CNNs can be trained on large-scale image datasets, 

enabling multi-class classification with higher accuracy. This 

methodology aligns with the principles of precision agriculture, 

which leverages technology to enhance crop monitoring and 

productivity. Furthermore, transfer learning — the process of 

adapting pre-trained networks to new tasks — has expanded the 

capabilities of deep learning in agriculture. State-of-the-art 

models such as DenseNet, EfficientNet, MobileNet, ResNet, and 

VGG, originally designed for general image recognition, have 

been successfully repurposed for disease detection in crops. The 

max-voting ensemble approach, which aggregates predictions 

from multiple models to improve accuracy, has also emerged as 

a powerful technique in this domain. 

 

RESULTS  

The grapevine dataset comprised images of leaves classified into 

four categories: black rot, Esca, leaf blight, and healthy (Figure 

1). To enhance model robustness and prevent overfitting, various 

data augmentation techniques were applied. These included 

adjustments in zoom, rotation, brightness, and shearing, which 

allowed the models to generalize better to unseen, real-world 

images. 

Our initial evaluation focused on comparing the classification 

accuracies of the different CNN architectures. Among all models 

tested, EfficientNetB7, ResNet50, and the baseline CNN 

demonstrated the highest accuracy, achieving 99.6%, 99.2%, and 

99.1%, respectively (Figure 2A). These three models were 

selected to form the foundation of a max-voting ensemble. The 

remaining models—VGG16, DenseNet121, and 

MobileNetV2—achieved accuracies of 98.3%, 96.7%, and 

94.3%, respectively. 

To gain further insights into the models’ behavior, we 

constructed confusion matrices for each CNN model (Figure 

2B). These matrices revealed that the most common 

classification errors occurred between black rot and Esca images. 

Notably, models such as DenseNet121, EfficientNetB7, 

ResNet50, and VGG16 frequently misclassified these two 

classes, likely due to their visual similarity in spot patterns and 

shapes. 

To understand the source of misclassifications, we analyzed error 

visualizations from the EfficientNetB7 model. The analysis 

showed that some leaf images displayed features that were nearly 

indistinguishable between two disease classes, contributing to 

the difficulty in accurate classification. 

We also evaluated the learning behavior of the models by 

plotting training and validation accuracy curves (Figure 3A). 

These graphs indicated that the training accuracy was generally 

higher than the validation accuracy, which is expected. However, 

the baseline CNN exhibited notable fluctuations in its validation 

accuracy, suggesting potential overfitting during training. 

Further, we analyzed the relationship between model weight size 

and validation accuracy by plotting their correlation (Figure 3B). 

The results indicated a strong positive correlation—models with 

larger weight files tended to achieve higher accuracy. This trend 

underscores the trade-off between model complexity and 

performance. 

We then deployed the three top-performing models—

EfficientNetB7, ResNet50, and baseline CNN—in a max-voting 

ensemble. This ensemble aggregated the predictions of each 

model and selected the final label based on the majority vote. 

The ensemble demonstrated outstanding performance with a 

classification accuracy of 99.8%. It misclassified only four 

images: two black rot leaves were predicted as Esca, and two 

Esca leaves were classified as black rot (Figure 4). 

To assess the efficiency of the ensemble model, we recorded 

inference times with and without a GPU. With GPU acceleration, 

the average time to classify a single image was 12.17 

milliseconds. Without a GPU, the time increased significantly to 

383 milliseconds. This clearly highlights the role of hardware in 

improving the speed of deep learning inference tasks. 

DISCUSSION  

This study demonstrated that both EfficientNetB7 and ResNet50 

are highly effective in the classification of grapevine leaf 

diseases. While we initially hypothesized that ResNet50 would 

outperform the other models due to its deep residual architecture, 

EfficientNetB7 ultimately proved to be the most accurate, 

achieving a classification accuracy of 99.6%. Its ability to scale 

efficiently and minimize parameter count contributed 

significantly to its superior performance across various image 

conditions. 
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The utilization of ensemble methods further elevated 

classification accuracy. The max-voting ensemble, combining 

EfficientNetB7, ResNet50, and the baseline CNN, achieved an 

impressive 99.8% accuracy—surpassing the results of each 

individual model. This ensemble approach leveraged the 

complementary strengths of each model, improving robustness 

and reducing individual model biases. 

An analysis of the training and validation accuracy curves 

(Figure 3A) revealed expected trends. Training accuracies were 

generally higher than validation accuracies. However, the 

baseline CNN exhibited erratic validation accuracy, indicating 

susceptibility to overfitting. This instability was not observed in 

the transfer learning models, which showed consistent and stable 

learning behavior across epochs. 

The discrepancy in validation accuracy between the baseline 

CNN and transfer learning models reflects differences in 

architectural robustness. The transfer learning models, pre-

trained on large-scale image datasets and adapted to grapevine 

disease classification, showed superior generalization 

capabilities. These models were not only more consistent but 

also more reliable in maintaining accuracy during validation. 

Data augmentation played a pivotal role in boosting 

performance, particularly for lower-accuracy models such as 

MobileNetV2, DenseNet121, and VGG16. These models 

exhibited improved generalization after being trained on 

augmented datasets, indicating that they initially struggled with 

overfitting. In contrast, top-performing models—

EfficientNetB7, ResNet50, and the baseline CNN—showed only 

marginal improvements, highlighting their inherent robustness. 

The relationship between model size and performance was also 

explored (Figure 3B). Our findings revealed a positive 

correlation between model weight size and accuracy, particularly 

among models with sizes below 150 megabytes. Beyond this 

threshold, however, gains in accuracy became marginal. This 

diminishing returns effect suggests that excessively large models 

may not yield proportional performance improvements and 

could be prone to overfitting or computational inefficiency. 

These results u nderscore a critical balance between model 

complexity and deployability in real-world agricultural 

applications. While larger models offer increased accuracy, they 

may not be feasible for deployment in resource-constrained 

environments. Thus, selecting models that offer both high 

performance and computational efficiency is essential for 

practical field use. 

Furthermore, inference speed is a significant factor in the real-

world usability of deep learning models. With GPU support, the 

ensemble model achieved an average inference time of just 12.17 

milliseconds per image. Without GPU acceleration, inference 

time rose to 383 milliseconds. This stark contrast emphasizes the 

need to optimize models for faster performance, especially in 

settings where high-end hardware is not available. 

To address these constraints in future work, we propose two 

strategies: model pruning and depthwise separable 

convolutions. Model pruning involves removing redundant 

parameters to streamline the network without compromising 

accuracy, while depthwise separable convolutions decompose 

standard convolutions into more efficient operations, 

significantly reducing computational overhead. Although these 

methods may introduce trade-offs in accuracy, they present 

promising avenues for improving inference speed and enabling 

deployment on lower-end devices 

In this study, we learned that EfficientNetB7 and ResNet50 

worked well individually for detecting diseases in grapevine 

plants. We hypothesized that ResNet50 would be the most 

accurate as it allowed deep networks to train with high accuracy. 

While ResNet50 performed very well with 99.2% accuracy, 

EfficientNetB7 was even more accurate with 99.6% accuracy. 

EfficientNetB7, with its ability to train efficiently, easily adapted 

to a wide variety of datasets, and massively reduced the number 

of parameters in a model, outperforming all other models. 

Moreover, ensemble methods such as maxvoting enabled us to 

achieve 99.8% accuracy on testing data with better results than 

any single transfer learning CNN model.  

 From the training and validation accuracy curves (Figure 3A), 

we noticed that the training accuracy is higher than the validation 

accuracy. This made sense intuitively. However, we noticed that 

the baseline CNN’s validation accuracy during training was 

inconsistent. This hinted that the model might have overfitted the 

training data. The rest of the line graphs (Figure 3A) had no 

issues. 

 The validation accuracy curve of the baseline CNN model 

highlighted that simpler model architectures could achieve high 

accuracy but might exhibit variability across epochs due to 

overfitting to the training dataset. In contrast, the five transfer 

learning CNN models, which were derived from the TensorFlow 

library (an open-source software library developed by the 

Google Brain team for machine learning and deep neural 

network research) and not from the baseline CNN model, 

demonstrated more consistent validation accuracies. These 

models were carefully modified to accommodate the grapevine 

disease detection dataset, ensuring their performance metrics are 

distinct and independent from those of the baseline CNN model. 

The robust architectures of these transfer learning models, which 

had been pre-trained on large and diverse datasets, contributed to 

their stability and reliability in validation accuracy, underscoring 

their effectiveness for this application.  

 In this study, data augmentation improved the performance of 

lower-accuracy models, such as MobileNetV2, DenseNet121, 

and VGG16, suggesting these models initially suffered from 

overfitting and benefited from the more varied training 

examples. Conversely, the higher-performing models – 

EfficientNetB7, ResNet50, and the baseline CNN – showed only 

a slight increase in accuracy with augmented  
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Figure 1: Examples of images showing grapevine leaves that are infected with black rot, Esca, leaf blight, or are healthy. 

There are 2 images for each class of grapevine leave diseases that are photographed on a plain neutral colored background, one at a 

time. 

Data, reflecting their inherent robustness and effective generalization from the training set. These observations highlighted the role 

of data augmentation in boosting model performance, especially by mitigating overfitting in models that were less optimized.  

 The correlation between model size and accuracy (Figure 3B) presented a nuanced insight into the effectiveness of different models. 

The observed trend indicated that larger models generally achieve higher accuracy. We could attribute this correlation to several 

factors that impact a model’s size, including the depth and number of layers, the complexity of the network architecture, and the 

volume of parameters and weights that the model must learn during training. Larger models like EfficientNetB7 and ResNet50, 

which had more extensive and intricate architectures, were capable of learning more complex features and patterns in the data, 

contributing to their higher accuracy rates. 

 However, the relationship between model size and accuracy was not linear. As indicated in our results, beyond a threshold of around 

150 megabytes, the improvements  

 

 
 

i Figure 2: Prediction accuracies and confusion matrices of the models tested.(A) Prediction accuracy on the grapevine leaves 

testingdata. The bar graph shows the accuracies of six different models: Baseline CNN, DenseNet121, EfficientNetB7, 

MobileNetV2, ResNet50, and VGG16. The accuracies ranged from 94.3% to 99.6%. The models are sorted in decreasing order 

based on their respective accuracy. (B) Six confusion matrices depicting errors of the models tested. For each confusion matrix, 

the x-axis has the predicted disease while the y-axis has the actual disease. The number of testing images that fall into a given 

category is written inside each square. The squares that are colored orange represent a large number of data points and black 

represent a small number of data points. 
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in accuracy became marginal (Figure 3B), which was particularly revealing. This plateau effect suggested that while more complex 

models with a greater number of parameters could capture nuanced patterns in data more effectively, there was a point beyond which 

additional complexity did not yield significant benefits. This could be due to overfitting, where the model became so well-tuned to 

the training data that it failed to generalize effectively to new, unseen data. It  

also reflected the principle of diminishing returns in machine learning, where the cost (in terms of computational resources and time) 

of increasing model complexity did not always translate into proportional improvements in performance.  Our findings highlighted 

that the relationship between model size and accuracy significantly affected the feasibility of deploying machine learning models in 

real-world agricultural contexts. Our research goals were to develop models  

 

Figure 3: Training and validation accuracies of different models 

as  

Figure 4: Classification metrics, confusion matrix and error visualization for max-voting ensemble deep learning model. (A) 

Classification metrics for the max-voting ensemble including precision, recall, f1-score, accuracy, macro average, and weighted 

average. (B) A confusion matrix depicting the errors made by the max-voting ensemble. The x-axis has the predicted disease while 

the y-axis has the actual disease. The number of testing images that fall into a given category is written inside each square. These 

squares are colored orange representing a large number of data points and black representing a small number of data points. (C) All 

of the grapevine leaf images that were misclassified by the max-voting ensemble are depicted. The predicted label and true label are 

shown above the image. The numbers 0, 1, 2, and 3 refer to black rot, Esca, leaf blight, and healthy respectively. Out of the 4 

misclassified images, 2 black rot-affected images were predicted as Esca, and another 2 Esca-affected images were classified as 

black rot 
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well as the relationship between model size and accuracy. (A) Six line graphs depicting the training and validation accuracies of 

all models tested. The x-axis represents the epoch number, and the y-axis represents the accuracy. The blue line represents the 

training accuracy, and the orange line represents the validation accuracy. (B) A line graph depicting the positive correlation between 

the size of the model’s weights in megabytes and the accuracy (in %) on testing data.  

that not only exhibited high accuracy but also maintained computational efficiency for ease of use in the field. This balance ensured 

that the models were sophisticated enough to detect subtle indicators of disease effectively yet streamlined enough to be deployed 

on platforms with limited computational power, which was often the case in agricultural environments. The findings from this study 

would inform the selection of future models, guiding a targeted approach that prioritized both precision and practicality for end-

users such as vineyard operators. 

 In this study, it took the max-voting ensemble 12.17 milliseconds to predict a single image with a GPU. However, most farmers 

lack access to GPUs. Without one, it took the max-voting ensemble 383 milliseconds to predict a single image. In future, this time 

could be reduced to apply this technology effectively in rural areas with poor farmers. To enhance model inference time in future 

work, we plan to implement two key strategies. The first is model pruning, a process where redundant network parameters are 

identified and removed. This approach aims to streamline the model without sacrificing its original accuracy, by focusing on the 

most crucial aspects of the network. The second strategy involves the use of depthwise separable convolutions. This technique 

separates the spatial and depth convolutions, significantly reducing the computational load and thus speeding up the inference 

process. However, there is some uncertainty regarding how this change might affect the model’s ability to accurately capture complex 

features, and consequently, its overall accuracy. 

 In summary, this research successfully demonstrated the superior performance of EfficientNetB7 and ResNet50 in detecting 

grapevine diseases, with data augmentation proving particularly beneficial for models susceptible to overfitting. While ensembling 

methods like max-voting significantly enhanced accuracy, the study also revealed a diminishing returns effect in the relationship 

between model size and accuracy, guiding practical model deployment in agriculture. Future work aims to reduce inference time 

through model pruning and depthwise separable convolutions, crucial for application in resource-constrained settings. Enhancing 

the website for bulk processing and considering a mobile app for local processing present further opportunities to increase the utility 

and accessibility of this technology in agricultural practices. 

MATERIALS AND METHODS 

 Our study involved seven major steps that included data collection, exploratory data analysis, data preprocessing and augmentation, 

baseline CNN model development, transfer learning, model evaluation and website deployment. 

Data Collection 

 To find a suitable dataset, we navigated to kaggle.com/ datasets to look for a dataset with at least three different classes, a healthy 

class, and at least 500 images per class. We found a satisfactory dataset, titled “Grape_disease,” that was published by the kaggle.com 

user “Pushpa Lama” on July 1, 2021, It contained four classes (black rot, Esca, leaf blight, and healthy) with about 2,000 training 

images and about 500 testing images in each class (Table 1). These original images were stored as Joint Photographic Experts Group 

(JPG) files with a size of  

256 pixels by 256 pixels. Consequently, the aspect ratio was 1:1. In total, the original dataset had 7,222 training images and 1,805 

testing images (Table 1). Afterward, we created a kaggle.com notebook and added the dataset to the input directory. 

Exploratory Data Analysis 

 To get a better feel for the data, we read all the image files and stored them in a dataframe. Next, we plotted a bar graph and pie 

chart showing the image distribution across classes. We found that black rot, Esca, leaf blight, and healthy images were 26.0%, 

26.4%, 24.2%, and 23.3%, respectively, of the total images in the original dataset. In addition, eight images for each class were 

plotted on a grid. It appeared that leaves were taken off grapevines and photographed with a plain background.  

Data Preprocessing and Augmentation 

 Next, we performed data preprocessing. Resizing the images to 224 pixels by 224 pixels allowed us to utilize a variety of transfer 

learning models in the subsequent steps. Additionally, we normalized the images by dividing all pixel values by 255, a common 

practice in image processing. This step scaled the pixel values to a range of 0 to 1, facilitating the model’s learning process by 

ensuring numerical stability and speeding up convergence during training. Normalizing the data in this way helped to achieve faster, 

more efficient training by reducing the computational burden on the model. We decided to perform data augmentation to ensure that 

the final model could handle low-resolution images as well as images with natural backgrounds. We did the augmentations (Figures 

5A – D), randomly on the entire dataset by techniques like zooming in or out of the image, flipping the image horizontally or 

vertically, rotating the image, increasing or decreasing the brightness of the image, and shearing the image. 
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Figure 6: The baseline CNN model architecture. The input layer is denoted with the letter A and has dimensions 224x224x3. The 

convolutional layers with letters B, C, D, E, F, and G have dimensions 112x112x32, 56x56x32, 28x28x32, 14x14x32, 7x7x32, and 

3x3x32 respectively. The kernel size is shown underneath the visual representation of the corresponding convolutional layer. All 

convolutional layers are shown along with the kernel size. The maxpooling from each convolutional layer to the next causes the 

width and height to halve. Finally, there are three hidden layers with 288, 512, and 512 nodes respectively and an output layer with 

4 nodes. These layers are represented with a column of small orange boxes. 

 Finally, we combined 1,656 images from the original dataset with 1,344 augmented images for each class. Please note that we used 

1,656 training images for each class as the original dataset had a different number of training images in each class, and we wanted 

to ensure the models were trained equally for each class. This led to each class having 3,000 images, with 12,000 images in total 

(Table 1). We published this newly created dataset on kaggle.com for others to use. Augmented images were used to help the model 

generalize, but they were not included in the testing data so the model could be evaluated on the real images present in the dataset. 

Baseline CNN Model 

 First, we created the model architecture (Figure 6) and built it as a “sequential model” in TensorFlow. Next, we added two fully 

connected dense layers with the relu activation function and an output layer with four output neurons at the top of the model (Figure 

6 and Appendix). At this stage, we checked for overfitting and underfitting using training and validation loss. Additionally, we 

evaluated the model’s performance using validation accuracy, a confusion matrix, and a classification report. The images that the 

model predicted inaccurately were visualized to understand the model’s pitfalls better. We used Python Version 3.0.12 for 

programming, Jupyter Notebook Version 7.0.6 for development, and various Python libraries including TensorFlow, seaborn, scikit-

learn, pandas, numpy and matplotlib for CNN modeling (Appendix). 

Transfer Learning 

 The five CNN models tested using transfer learning were DenseNet121, EfficientNetB7, MobileNetV2, ResNet50, and VGG16. For 

each transfer learning model, we imported its pre-trained weights from ImageNet. Next, we created a sequential model containing 

the transfer learning model. We then added a GlobalAvgPool2D layer to the sequential model. By calculating the mean of the input’s 

width and height, this layer performed downsampling. It reduced the total number of parameters and the chance of overfitting. 

Finally, we added a dense layer with a softmax activation. By doing this, raw neural network outputs were converted into probability 

vectors. Next, we set an EarlyStopping callback that stopped training if validation accuracy did not improve after eight epochs. In 

addition, we implemented a ModelCheckpoint callback that saved the model with the lowest validation loss. We compiled the 

sequential model with the Adam optimizer. Finally, we trained each model for 25 epochs, aligning with established conventions in 

machine learning. This duration struck a balance between undertraining and overfitting: too few epochs might prevent the model 

from fully learning from the dataset, while too many could cause the model to learn the training data too well, failing to generalize 

to new data. 

Model Evaluation 

 We determined the most suitable CNN models for the max-voting ensemble using validation accuracies, confusion matrices, and 

error visualizations. In a max-voting ensemble, each base model made a prediction on an image. Each prediction counted as a vote, 

and the disease with the most votes was the final prediction. If there was a tie, the final prediction was decided by the highest-scoring 

base model. We evaluated the ensemble using accuracy score, confusion matrix, classification metrics, and error visualization. We 

also  
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Figure 7: Grapevine disease detection website in action. A grapevine leaf that is affected with black rot has been uploaded. The 

user learned that the leaf is infected with black rot with 0.987 probability. 

found out how long the ensemble took to classify a single image with and without a GPU. After that, we downloaded the HDF5 file 

containing the most accurate models’ weights.  
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