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Abstract— Neonatal bradycardia occurs when the resting heart rates are under 80 beats per minute. The bradycardia mechanisms 

includes abnormalities in sinus nodeand irregularities of atrioventricular transmission. This paper proposed Hybrid Dense Attention 

Cascaded Long Short Term Memory (HybDcL)to detect the Neonatal Bradycardia. In this work, we take input data from Preterm 

Infant Cardio-respiratory Signals (PICS) databasefor the normal and bradycardia ECG signals. Initially, the input ECG signal is pre-

processed by the three stage Discrete Wavelet Coefficient Based Inverse Transform (DwavIT) approach. This method is performed to 

improve the signal quality by suppressing the noises. Then the pre-processed signals are provided for feature extractor byQ-tune 

empirical variational component analysis (QEmVaC) model. In the feature extractor model, for obtaining a set of feature vectorsthe 

Q-tune wavelet transform (QWT), Variational mode decomposition (VMD), empirical mode decomposition (EMD) and Independent 

component analysis (ICA) are utilized to extract the features. The MAE value of the proposed method is 0.008%, while comparing 

with other existing methods our proposed method yields better performance. This model is more effective using the hybrid deep 

learning methodologies for gaining enhanced prediction results. 

Keywords: Deep Learning, Neonatal Bradycardia detection, Discrete Wavelet Transform, Variational Mode Decomposition, Long 
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   I. Introduction 

Neonatal diseases are among the major reasons of morbidity 

and an important contributor towards under-five mortality 

rates in the world [1]. The neonatal duration is a complex 

situation in human life when a new-born infant has to come 

up with the fresh environment and diverse physiological 

changes that are highly needed for life [2-3]. The emergence 

of neonatal prematurity happens at a rate of 10% worldwide 

that is defined as less than 37 weeks of gestational age. The 

growth disorders can be experienced in case of these infants 

which can lead over impaired health situations [4]. The 

general syndrome noticed in most of the preterm infants are 

persistent episodes of apnea and bradycardia [5]. Apnea 

indicates the absence of breathing in a neonate over the 

period of greater than 15 seconds. Bradycardia is a condition 

where the heartbeat of neonates beats less than 60 times per 

minute. Because of these disorders, end organ damage may 

generate that are associated to ischemia or minimized flow of 

blood and hypoxemia or minimized oxygenation of blood. 

Due to these variations, oxygenated haemoglobin delivery, 

reduced cerebral blood velocity and minimized metabolic by-

products clearance are resulted [11]. In case of preterm 

neonates, heart rate information tends to be the most 

significant clinical indicator as it acts as a complex 

physiological procedure that influences every organ systems 

[12-13]. The most commonly used convenient approaches by 

the surgeons are auscultation and palpation methods but it 

does not generate precise outcomes compared 

tophotoplethysmography (PPG) and electrocardiography 

(ECG) based methods [14]. Certain preventive 

methodologies like maternal immunization targets on 

maternal health before birth to guarantee a healthy pregnancy 

[15]. In terms of curative methodologies, the diagnostic tools 

are limited and the diagnosis period is longer that leads over 

declined neonate’s condition 

II. MOTIVATION 

The premature neonates are subjected to bradycardia influenced 

by a huge number of factors including immature respiratory 

development and sepsis. As an efficient physiological indicator, 

the heart rate possess greater significance in neonatal health 

observation in neonatal intensive care unit. The present golden 

standard of heart rate monitoring is dependent upon the PPG or 

ECG signals evaluated using ECG sensors or PO. The 

recordings of heart rate variability was carried out at home at 

term equivalent age. The heart rate variability metrics were 

associated between diverse transfer periods. The performance 

of heart beat detection were then associated with standard 

surface leads. All these researches are motivated to propose a 

new and effective deep learning based neonatal bradycardia 

https://www.sciencedirect.com/topics/medicine-and-dentistry/sinus-bradycardia
https://www.sciencedirect.com/topics/medicine-and-dentistry/atrioventricular-conduction
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detection that can provide highly accurate results than the 

existing techniques 

The rest of this paper is structured as follows: Section II delivers 

recent related works, Section III carries proposed methodology 

for detecting neonatal bradycardia. Section IV contains results 

and discussion comparing proposed with several existing 

methodologies, and Section V presents the conclusion 

III. PROPOSED DESIGN 

 

One of the critical problems in preterm neonates is bradycardia 

that signifies the slower heart rate indicating low oxygen levels 

in blood compared to the normal heart rate. The neonates 

suffering from bradycardia heart disease possess lower heart 

rates tending towards blood velocity reduction that can be 

traversed over developing organs. To mitigate long term effects 

of bradycardia, early detection is thus highly crucial. As 

preterm neonates are consistently monitored, the sudden 

movements generate motion artefacts which leads over 

inaccurate results. In most of the existing researches, the ECG 

signal prediction is found to be highly complex because of 

irrelevant features and inappropriate training ability. Hence in 

the proposed research work, a novel DL methodology for 

bradycardia detection from preterm neonates is presented. The 

block diagram of the proposed work is shown in Figure 1. 
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Figure 1: Block diagram of the proposed work 

 

Initially, the ECG signal data are collected from PICS database 

which are subjected to pre-processing to enhance the signal 

quality by suppressing the noises. The ECG signals length is 

checked in the pre-processing stage and every ECG signal 

contains certain amount of heartbeats and numerous samples 

 

Noise removal from ECG signals using DwavIT: 

To separate signal features, it is essential to clean noise 

from some digital signal that is misleading by sounds of 

changing nature. An ECG signal explicitlybiased by noise can 

be written as: 

 
     lMlRlN                                                           (1) 

Where, noise on ECG signal is  lM ,  lN denotes the ECG 

signal, ECG signal devoid of noise alteration is signified as

 lR . 

 

From a signal the noise is eliminated by using the common 

method called Wavelet transform.The symlet clan of a discrete 

wavelet transform (DWT) is utilized to clean the noise from 

ECG signals that is a Daubechies wavelet by the minimum 

asymmetry and a dense carrier 

 

Figure 2: DWT ECG signal 

 

Figure 3: Inverse DWT ECG signal 

For eliminating the artefacts from fECG signal the EMD is 

appropriate and alsoappropriate for the non-stationary signals 

and non-linear signals. The purpose of this process is to molder 

the signal intooscillatory functions. The low-frequency 

modules are known as residues, and high-frequency modules 

are known as Intrinsic Mode Functions (IMFs). From the 

uppermost to lowermost the algorithm sorts tasks by means of 

frequency. For the method to function correctly there contains 

two conditions. In the first condition, the amount of local 

excessesneed be similar as the amount of zero crossings at best 

by single. And in the second condition, the mean value of 

envelopes at several point are demarcated by the local minima 

and local maxima thatneed to be zero. The shifting method is 

known as progression of signal decomposition into IMFs.  

 Initially, it is essential to detect the entire local minima 

and local maxima of input signal  lz . Next, to produce proper 

envelopes by connecting all maxima, the upper envelop  lcmax

as a cubic spline and also by connecting all minima, it is 
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essential to make lower envelop  lcmin
as a cubic spline. The 

mean of envelops is dogged by the below Equation (16): 

 
    

2

maxmin

01

lclc
lu


                              (2) 

 From the input signal  lz the mean value is detracted. 

According to the below Equation (17) the first proto-IMF  lr01

is gained.  

     lulzlr 0101                                          (3) 

 Regrettably, it does not frequently happen that the 

 lr01 module be eligible for IMF and at this moment it is 

discernible as proto-IMF. The procedures from above specified 

is must be reiterated and it is symbolized as follows: 

       lulrlr mppmmp  1                               (4) 

Where, the index of haul out IMF is denoted as m , p signifies 

the iteration index. The process is reiterated till the signal size

 lrmp becomes constant. It is essential to describe the stopping 

criterion for this reason. By the guess of standard deviation  

the stopping criterion method is demarcated.   

The normal and bradycardia signals can be predicted effectively 

using efficient DL model called Hybrid Dense Attention 

Cascaded Long Short Term Memory (HybDcL). Figure 4 

denotes the block diagram of HybDcL for predicting the 

bradycardia signal 

Input

 signal
LSTM
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Attention 
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Dense 

layer

Predicted

 signal
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Figure 4: Block diagram of HybDcL 

IV. SIMULATION RESULTS AND DISCUSSIONS 

This section presents the results and analysis of the proposed 

technique. Here, simulation is performed by using Python tool. 

Total amount of data’s present in the Preterm Infant Cardio-

respiratory Signals (PICS) database is one lakh documents with 

ten infants. From this database ten thousand documents with 

one infant data’s are utilized for this work. Some of the sample 

ECG signal with several timestamp is mentioned in the below 

table 1. 

Table 1: ECG data for each timestamp 

Timestamp ECG signal 

0 15148 

1 15142 

2 15142 

3 15148 

4 15142 

 

In this section, the results and analysis of the proposed method 

and the comparison of the proposed technique with existing 

methods is discussed. Also, the comparison of the proposed 

model with existing techniques like Dense Cascaded LSTM, 

Attention Cascaded LSTM, Dense Bi-LSTM, Dense Cascaded 

network. The below Figure 5shows the comparison of training 

accuracy and loss arcs of proposed method with existing 

method by varying the epoch values 

 

Figure 5. Comparison of training accuracy and loss 

of proposed with existing method 

 

The above figure shows the comparison of training accuracy 

and loss arcs of proposed with existing method by varying the 

epoch values. From this figure, when the epoch value is zero for 

the proposed method the training accuracy value starts 

increasing from 0.6, and when the epoch value is greater than 

50 the training accuracy value reaches its peak as greater than 

0.9 training accuracy value and remains same for the 

succeeding epoch values. Hence it is inferred that the proposed 

work attains enhanced training accuracy for greater epoch 

values than the existing method 

.  
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Figure 9. Accuracy comparison of proposed with existing 

work 

The above figure indicates the accuracy comparison of 

proposed method with existing methods like Dense Cascaded 

LSTM, Dense Bi-LSTM, Attention Cascaded LSTM, and 

Dense Cascaded Network. From this figure, it is inferred that 

the accuracy value of proposed method is 0.992%, Dense 

Cascaded LSTM attains accuracy value 0.954%, the accuracy 

of Dense Bi-LSTM is 0.884%, Attention Cascaded LSTM gains 

0.9% accuracy, and the accuracy value for Dense Cascaded 

Network is 0.836%. Hence, it is proved that the accuracy value 

of proposed method is higher when compared with the existing 

method. Figure 10 represents the precision comparison of 

proposed method with existing method. 

V. CONCLUSION 

In this paper, we proposed a new Hybrid Dense 

Attention Cascaded Long Short Term Memory for predicting 

the normal and bradycardia signals from ECG signals. In the 

pre-processing method by using DwavIT modelthe noises from 

the input signal is suppressed to improve the signal quality and 

effective noise removal. Then the pre-processed signal is 

provided to QEmVaC model to extract the features for 

obtaining a set of feature vectors. Next, the optimal features are 

selected by using ExMaRo algorithm for the feature 

dimensionality minimization and improve the learning 

abilitywith less rates of error. For predicting the normal and 

bradycardia signals from the ECG signals the HybDcL model 

is used. The proposed model provides lower optimization for 

MSE of 0.008%, RMSE of 0.08%, and MAE of 0.008% and 

gains higher optimization for F1 Score of 0.992%, accuracy of 

0.99%, and precision of 0.992%. 
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