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1.  Introduction  

A function that translates a convex subset of a vector space to the set of real numbers is called a convex function. There are numerous 

uses for functions' concavity and convexity in demonstrating inequality. In 2004, Cha studied formulas pertaining to convex function 

theorems and derived a number of significant inequalities that were then used to solve conditional extremum problems and prove 

other inequalities [2]. Xia used the concavity, convexity, and continuity of functions to derive Jensen's inequality in 2005 [7]. Song 

and Wan's investigation of GA-convex functions in 2010 yielded a more succinct Hadamard-type inequality for GA-convex functions 

[5]. Convexity, monotonicity, and non-negativity are some crucial characteristics of convex functions that aid in the derivation and 

demonstration of inequalities. 

2. Basic definitions and  theorems  

Definition 2.1: [4]  A set Y   is convex  where Y ⊂ Rn  if   there is y׳, y׳׳ ∈ Y   the straight line segment between y׳and y׳׳ belongs 

entirely to Y, in another way     ∀ h ∈ [0,1]    then    

yh  =  (1 − h)y׳  + hy׳׳  ∈ Y  ∀ h ∈ [0,1]. 

Definition 2. 2: [4] A function 𝑔 defined on a convex set 𝑁 is concave where g ∶ N → R , N ⊂ Rn if  

(1 − ℎ)𝑔 (y׳) + ℎ𝑔 (y׳׳) ≤  𝑔 ((1 − ℎ)y׳  + ℎy׳׳), 

where y׳and y׳׳  ∈ 𝑁 ∀ h ∈ [0,1]. 

𝑔 is completely concave if  

(1 − ℎ)𝑔 (y׳) + ℎ𝑔 (y׳׳) <  𝑔 ((1 − ℎ)y׳  + ℎy׳׳). 

Definition 2. 3: [4]   A function 𝑔: N → R , N ⊂ Rn is convex if  

(1 − ℎ)𝑔 (y׳) + ℎ𝑔 (y׳׳) ≥  𝑔 ((1 − ℎ)y׳  + ℎy׳׳), 

where y׳and y׳׳  ∈ 𝑁 ∀ h ∈ [0,1]. 

𝑔 is completely convex if  

(1 − ℎ)𝑔 (y׳) + ℎ𝑔 (y׳׳) >  𝑔 ((1 − ℎ)y׳  + ℎy׳׳). 

Theorem  2.4: [4]  Let functions  𝑔1, … , 𝑔𝑛 are convex (concave) and b1 >  0, … , bn > 0,  then      H = b1 g1 + … + bn gn  is 

convex (concave). 
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Theorem 2.5: [4]    A ℂ1  function g ∶ N → R , N ⊂ Rn   is concave  iff 

g(z) −  g(y) ≤  Dg(y)(z − y ), 
∀  y, z ∈ N,   in other words  

 G(z) −  g(y) ≤
𝜕𝑔

𝜕𝑦1
(𝑦)(𝑧1 − 𝑦1) + ⋯+

𝜕𝑔

𝜕𝑦𝑛
(𝑦)(𝑧𝑛 − 𝑦𝑛), 

and 𝑔  is convex  iff  g(z) −  g(y) ≥  Dg(y)(z − y ). 

Theorem 2. 6: [4]  A function 𝑔 defined on a convex set 𝑁 is concave where g ∶ N → R , N ⊂ Rn if 

Dg(y∗)(z − y∗ ) ≤ 0 

∀  z ∈ N ,  then  y∗  is a global maximizer of 𝑔 on 𝑁. 

Also , ∀  z ∈ N  if   
Dg(y∗)(z − y∗ ) ≥ 0 

and g is convex  then  y∗  is a global minimizer of 𝑔 on 𝑁. 

Definition 2.7: [4]   A function g(y) be quasi concave if   ℒ 𝜂 = {𝑦 ∶  g(y)   ≤  𝜂} be a convex set ∀ constant 𝜂  , where  g(y)  

defined on N ⊂ Rn. 

Also, 𝑔  be  quasi convex if N 𝜂 = {𝑦 ∶  g(y)  ≥  𝜂}  be a convex set ∀ constant 𝜂. 

Definition 2. 8: [4]   A function g(y) be quasi concave if    

 𝑔(ℎ𝑦 +  (1 − ℎ)𝑧)  ≥  𝑚𝑖𝑛(𝑔(𝑦), 𝑔(𝑧)) 

∀𝑦, 𝑧 ∈  𝑁 and ℎ ∈  [0, 1]. 

And  𝑔 is quasi convex if 

 𝑔(ℎ𝑦 + (1 − ℎ)𝑧)  ≤  𝑚𝑎𝑥(𝑔(𝑦), 𝑔(𝑧)). 

Theorem 2.9: [1]   Let 𝑌,𝑊 ⊆  ℛ𝑛 be convex sets and 𝑠 ∈ ℜ. Then the following sets are convex    

 

1. 𝑠𝑌 =  {𝑞 ∈ ℛ𝑛 ∶  𝑡ℎ𝑒𝑟𝑒 𝑖𝑠  𝑦 ∈  𝑌 ∋  𝑞 =  𝑠𝑦} 
2. 𝑌 +  𝑊 =  {𝑞 ∈ ℛ𝑛 ∶  𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝒚 ∈  𝑌 𝑎𝑛𝑑 𝑧 ∈  𝑊 ∋  𝑞 =  𝑦 +  𝑧} 
3. 𝑌 ∩  𝑊. 

Definition 2.10:  [1]   𝑦 ∈ ℛ𝑛 be a convex combination of  𝑦1, … , 𝑦𝑟 ∈ ℛ𝑛  if  

𝑦 = ∑𝛿𝑖𝑦𝑖 =

[
 
 
 
 
 
 ∑ 𝛿𝑖𝑦1

𝑖

𝑟

𝑖=1

⋮

∑𝛿𝑖𝑦𝑛
𝑖

𝑟

𝑖=1 ]
 
 
 
 
 
 

𝑟

𝑖=1

 

 𝑤ℎ𝑒𝑟𝑒  𝛿𝑖 ∈ [0, 1]  𝑎𝑛𝑑 ∑𝛿𝑖 = 1 

𝑟

𝑖=1

. 

Definition 2.11: [1]  ∀ 𝑦, 𝑦′  ∈  𝐷 𝑎𝑛𝑑   𝜎, 𝛿 >  0  ,   𝜎𝑦 +  𝛿𝑦′  ∈  𝐷  𝑡ℎ𝑒𝑛 𝐷 ⊆  ℛ𝑛 𝑏𝑒 𝑎 𝑐onvex cone. 

Definition 2.12 : [1]  let  𝒗 ∈  ℛ𝑛 , 𝑣 ≠  0 , 𝑘 ∈  ℛ , the hyperplane  span by 𝒗  and 𝑘 is the   (n - 1) dimensional plane 
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𝐻𝑣 ,𝑘  = {𝑦 ∈  ℛ𝑛 ∶  𝑣 ·  𝑦 =  𝑘}. 

The sets {𝑦 ∈  ℛ𝑛 ∶ 𝑣 ·  𝑦 ≥  𝑘} 𝑎𝑛𝑑 {𝑦 ∈  ℛ𝑛 ∶ 𝑣 ·  𝑦 ≤  𝑘} be  half-space above and the half-space below the hyperplane 𝐻𝑣 ,𝑘. 

Definition 2.13 : [1]  Let  𝑌,𝑊 ⊆  ℛ𝑛  are two nonempty sets 

 There is 𝑣 ≠  0 ∈  ℛ𝑛 and 𝑘 ∈  ℛ  where 𝑣 ·  𝑦 ≥  𝑘 ≥ 𝑣 ·  𝑧  iff   𝑌 and 𝑊  are separated via  a hyperplane  𝐻𝑣 ,𝑘   ,  

for all   𝑦 ∈  𝑌 , 𝑧 ∈  𝑊. 
 There  is 𝑣 ≠  0 ∈  ℛ𝑛 and 𝑘 ∈  ℛ  where  𝑣 ·  𝑦 >  𝑘 > 𝑣 ·  𝑧  iff   𝑌 and 𝑊  are strictly separated via  a hyperplane  

𝐻𝒗 ,𝑘   ,  for all   𝒚 ∈  𝑌 , 𝒛 ∈  𝑊. 

Definition 2.14 : [1]  Let 𝑌 ⊆  ℛ𝑛 such that 𝑌 ≠ 0. 

 There is 𝒗 ≠  𝟎 ∈  ℛ𝑛   where  𝑣 ·  𝑦 ≥  𝑣 · y∗  iff  𝑌 is supported at  y∗  for all   𝑦 ∈  𝑌 

 There is 𝑣 ≠  0 ∈  ℛ𝑛   where  𝑣 ·  𝑦 >  𝑣 · y∗  iff  𝑌 is strictly supported at  y∗  for all   𝑦 ∈  𝑌  ,  𝑦 ≠   y∗ 

Theorem 2.15 : [1]   ℏ𝑦𝑝 𝑔  is convex  iff    𝑔  is concave , such  that  

ℏ𝑦𝑝 𝑔 =  {(𝒚, 𝑧) ∈  ℛ𝑛+1 ∶  𝒚 ∈   ℛ𝑛 𝑎𝑛𝑑 𝑧 ≤  𝑔(𝒚)}. 

Theorem 2.16: [1] the following are satisfies  

1.  𝑔 be convex. 

2.  𝑒𝑝𝚤 𝑔   be a convex set    , where 𝑒𝑝𝚤 𝑔 = {(𝒚, 𝑧) ∈  ℛ𝑛+1 ∶  𝒚 ∈   ℛ𝑛  𝑎𝑛𝑑 𝑧 ≥  𝑔(𝒚)}    . 
3. ∀   𝑦′, 𝑦′′  ∈ 𝐾,  𝑦𝜎  =  𝜎 𝑦′  +  (1 −  𝜎)𝑦′′, 

𝑔( 𝑦𝜎)  ≤  𝜎𝑔( 𝑦′)  +  (1 −  𝜎)𝑔(𝑦′′). 

Theorem 2.17 : [8]  If 𝑔(𝑦) is concave downwards or  upwards in [𝜕, 𝑓], then  

𝑔(𝜎𝑦1  +  𝛿𝑦2)  ≤  (𝑜𝑟 ≥)𝜎𝑔(𝑦1)  +  𝛿𝑔(𝑦2). 

Where (𝑥) is concave downwards or  upwards in [∂, f] if  

𝑔(𝑦) ≤  (𝑜𝑟 ≥)
𝑦2 − 𝑦

𝑦2 − 𝑦1

𝑔(𝑦1) +
𝑦 − 𝑦1

𝑦2 − 𝑦1

𝑔(𝑦2). 

Definition 2.18 : [8]  g(y) is concave down or concave up on [∂, f] if  

𝑔(𝜎𝑦1  +  𝛿𝑦2)  ≤  (𝑜𝑟 ≥)𝜎𝑔(𝑦1)  +  𝛿𝑔(𝑦2) 

where  𝑦1 ,  𝑦2 ∈ [∂, f], 𝜎 > 0 , δ > 0   𝜎 + 𝛿 = 1. 

Lemma 2.19 : [8] For any  𝑦1 ,  𝑦2 , … , 𝑦𝑛 ∈ [∂, f] there is  

𝑔 (
𝑦1 +  𝑦2 + ⋯ + 𝑦𝑛

𝑛
) ≤ 𝑜𝑟 ≥

𝑔(𝑦1) + 𝑔(𝑦2) + ⋯+ 𝑔(𝑦𝑛)

𝑛
, 

where g(y) is convex downwards or  upwards on [∂, f]. 

Definition 2.20 : [6]   ∀ 𝑦1 ,  𝑦2 ∈  𝐽 ∈ (0, +∞)   and ℎ ⊆  (0,1),  there is  

𝑔(𝑦1
ℎ𝑦2

1−ℎ) ≤ h𝑔(𝑦1) + (1 − h)𝑔(𝑦2). 

Then g(y) be  a GA-sub convex function on J. 

Theorem 2.21: [8]  If  𝑔(𝑦) be a  GA-convex function  on (𝜕, 𝑓) ∈  (0, +∞),   then  𝑔(𝑒𝑦) be a  G A-sub convex function on  

(𝑙𝑛𝜕, 𝑙𝑛𝑓),  ∀ 𝑦1, 𝑦2  ∈  (𝜕, 𝑓) and ℎ ∈  (0,1). 
Theorem 2.22: [8]  If  g(y) be a  GA-concave on 𝐽 ∈ (0, +∞) , 𝑦𝑗  ∈  𝐽, ℷ𝑗  ∈  ℛ (𝑗 =  1,2, … , 𝑟), ℷ1 + ℷ2 + ⋯+ ℷ𝑟 = 1  then  
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𝑔 (𝑦1
ℷ1  𝑦2

ℷ2  … 𝑦𝑘
ℷ𝑘)  ≤  ℷ1𝑔(𝑦1)  +  ℷ2𝑔(𝑦2)  +  ⋯ + ℷ𝑘 𝑔(𝑦𝑘)(∑ℷ𝑗

𝑘

𝑗=1

 =  1 , ℷ𝑗  > 0). 

Theorem 2.23:  [3]  If  𝑔: [𝜕, 𝑓] →  (0, +∞)  be  a GA-Concave, then  

(
1

𝑒
(
𝑓𝑓

𝜕𝜕
)

1

𝑓 − 𝜕
) ≤

1

𝑓 − 𝜕
 ∫ 𝑔(𝑦)

𝑓

𝜕

 𝑑𝑦 ≤  (
1

 𝑙𝑛𝑓 − 𝑙𝑛𝜕
−

𝜕

𝜕 − 𝑓
)𝑔(𝜕) + (

𝑓

𝜕 − 𝑓
−

1

 𝑙𝑛𝑓 − 𝑙𝑛𝜕
)𝑔(𝑓). 
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