Concave and convex functions

Mayada Ali Kareem and Rehab Amer Kamel

Department of Mathematics, College of Education for Pure Sciences, University of Babylon, Iraq

pure.meyada.ali@uobabylon.edu.iq and pure.rehab.amer@uobabylon.edu.iq

Abstract: This research is a review of the topic of convex and concave functions. We presented some important theories and definitions related to this topic and presented some of the relationships that link these concepts.

Keywords: convex set, concave function, GA-convex function

1. Introduction

A function that translates a convex subset of a vector space to the set of real numbers is called a convex function. There are numerous uses for functions' concavity and convexity in demonstrating inequality. In 2004, Cha studied formulas pertaining to convex function theorems and derived a number of significant inequalities that were then used to solve conditional extremum problems and prove other inequalities [2]. Xia used the concavity, convexity, and continuity of functions to derive Jensen's inequality in 2005 [7]. Song and Wan's investigation of GA-convex functions in 2010 yielded a more succinct Hadamard-type inequality for GA-convex functions [5]. Convexity, monotonicity, and non-negativity are some crucial characteristics of convex functions that aid in the derivation and demonstration of inequalities.

2. Basic definitions and theorems

Definition 2.1: [4] A set Y is convex where $Y \subset \mathbb{R}^n$ if there is $y', y'' \in Y$ the straight line segment between y' and y'' belongs entirely to Y, in another way $\forall h \in [0,1]$ then

$$y^h = (1 - h)y' + hy'' \in Y \ \forall \ h \in [0,1].$$

Definition 2. 2: [4] A function g defined on a convex set N is concave where $g: N \to R$, $N \subset R^n$ if

$$(1-h)g(y') + hg(y'') \le g((1-h)y' + hy''),$$

where y'and y'' $\in N \ \forall \ h \in [0,1]$.

g is completely concave if

$$(1-h)g(y') + hg(y'') < g((1-h)y' + hy'').$$

Definition 2. 3: [4] A function $g: \mathbb{N} \to \mathbb{R}$, $\mathbb{N} \subset \mathbb{R}^n$ is convex if

$$(1-h)g(y') + hg(y'') \ge g((1-h)y' + hy''),$$

where y'and y'' $\in N \ \forall \ h \in [0,1]$.

g is completely convex if

$$(1-h)g(y') + hg(y'') > g((1-h)y' + hy'')$$

Theorem 2.4: [4] Let functions $g_1, ..., g_n$ are convex (concave) and b1 > 0, ..., bn > 0, then $H = b1 g_1 + ... + bn g_n$ is convex (concave).

Vol. 9 Issue 7 July - 2025, Pages: 14-17

Theorem 2.5: [4] A \mathbb{C}^1 function $g: \mathbb{N} \to \mathbb{R}$, $\mathbb{N} \subset \mathbb{R}^n$ is concave iff

$$g(z) - g(y) \le Dg(y)(z - y),$$

 \forall y, z \in N, in other words

$$G(z) - g(y) \le \frac{\partial g}{\partial y_1}(y)(z_1 - y_1) + \dots + \frac{\partial g}{\partial y_n}(y)(z_n - y_n),$$

and g is convex iff $g(z) - g(y) \ge Dg(y)(z - y)$.

Theorem 2. 6: [4] A function g defined on a convex set N is concave where $g: N \to R$, $N \subset R^n$ if

$$Dg(y^*)(z-y^*) \le 0$$

 $\forall z \in \mathbb{N}$, then y^* is a global maximizer of g on N.

Also, $\forall z \in N$ if

$$Dg(y^*)(z - y^*) \ge 0$$

and g is convex then y^* is a global minimizer of g on N.

Definition 2.7: [4] A function g(y) be quasi concave if $\mathcal{L}_{\eta} = \{y : g(y) \leq \eta\}$ be a convex set \forall constant η , where g(y) defined on $\mathbb{N} \subset \mathbb{R}^n$.

Also, g be quasi convex if N $\eta = \{y : g(y) \ge \eta\}$ be a convex set \forall constant η .

Definition 2. 8: [4] A function g(y) be quasi concave if

$$g(hy + (1-h)z) \ge min(g(y), g(z))$$

 $\forall y, z \in N \text{ and } h \in [0, 1].$

And g is quasi convex if

$$g(hy + (1-h)z) \le max(g(y), g(z)).$$

Theorem 2.9: [1] Let $Y, W \subseteq \mathbb{R}^n$ be convex sets and $s \in \mathbb{R}$. Then the following sets are convex

- 1. $sY = \{q \in \mathbb{R}^n : \text{there is } y \in Y \ni q = sy\}$ 2. $Y + W = \{q \in \mathbb{R}^n : \text{there is } \mathbf{y} \in Y \text{ and } z \in W \ni q = y + z\}$ 3. $Y \cap W$.
- **Definition 2.10**: [1] $y \in \mathbb{R}^n$ be a convex combination of $y_1, ..., y_r \in \mathbb{R}^n$ if

$$y = \sum_{i=1}^{r} \delta^{i} y^{i} = \begin{bmatrix} \sum_{i=1}^{r} \delta^{i} y_{1}^{i} \\ \vdots \\ \sum_{i=1}^{r} \delta^{i} y_{n}^{i} \end{bmatrix}$$

where $\delta^i \in [0,1]$ and $\sum_{i=1}^r \delta^i = 1$.

Definition 2.11: [1] $\forall y, y' \in D$ and $\sigma, \delta > 0$, $\sigma y + \delta y' \in D$ then $D \subseteq \mathbb{R}^n$ be a convex cone.

Definition 2.12: [1] let $v \in \mathbb{R}^n$, $v \neq 0$, $k \in \mathbb{R}$, the hyperplane span by v and k is the (n-1) dimensional plane

$$H_{v,k} = \{ y \in \mathcal{R}^n : v \cdot y = k \}.$$

The sets $\{y \in \mathbb{R}^n : v \cdot y \geq k\}$ and $\{y \in \mathbb{R}^n : v \cdot y \leq k\}$ be half-space above and the half-space below the hyperplane $H_{v,k}$.

Definition 2.13 : [1] Let $Y, W \subseteq \mathbb{R}^n$ are two nonempty sets

- There is $v \neq 0 \in \mathbb{R}^n$ and $k \in \mathbb{R}$ where $v \cdot y \geq k \geq v \cdot z$ iff Y and W are separated via a hyperplane $H_{v,k}$, for all $y \in Y$, $z \in W$.
- There is $v \neq 0 \in \mathbb{R}^n$ and $k \in \mathbb{R}$ where $v \cdot y > k > v \cdot z$ iff Y and W are strictly separated via a hyperplane $H_{v,k}$, for all $y \in Y$, $z \in W$.

Definition 2.14: [1] Let $Y \subseteq \mathbb{R}^n$ such that $Y \neq 0$.

- There is $v \neq 0 \in \mathbb{R}^n$ where $v \cdot y \geq v \cdot y^*$ iff Y is supported at y^* for all $y \in Y$
- There is $v \neq 0 \in \mathbb{R}^n$ where $v \cdot y > v \cdot y^*$ iff Y is strictly supported at y^* for all $y \in Y$, $y \neq y^*$

Theorem 2.15: [1] $\hbar yp g$ is convex iff g is concave, such that

$$\hbar yp g = \{(y, z) \in \mathcal{R}^{n+1} : y \in \mathcal{R}^n \text{ and } z \leq g(y)\}.$$

Theorem 2.16: [1] the following are satisfies

- 1. *g* be convex.
- 2. epi g be a convex set , where $epi g = \{(y, z) \in \mathbb{R}^{n+1} : y \in \mathbb{R}^n \text{ and } z \geq g(y)\}$.
- 3. $\forall y', y'' \in K, y^{\sigma} = \sigma y' + (1 \sigma)y'',$

$$g(y^{\sigma}) \leq \sigma g(y') + (1 - \sigma)g(y'').$$

Theorem 2.17: [8] If g(y) is concave downwards or upwards in $[\partial, f]$, then

$$g(\sigma y_1 + \delta y_2) \le (\sigma r \ge) \sigma g(y_1) + \delta g(y_2).$$

Where (x) is concave downwards or upwards in $[\partial, f]$ if

$$g(y) \le (or \ge) \frac{y_2 - y}{y_2 - y_1} g(y_1) + \frac{y - y_1}{y_2 - y_1} g(y_2).$$

Definition 2.18: [8] g(y) is concave down or concave up on $[\partial, f]$ if

$$g(\sigma y_1 + \delta y_2) \le (\sigma r \ge) \sigma g(y_1) + \delta g(y_2)$$

where y_1 , $y_2 \in [\partial, f]$, $\sigma > 0$, $\delta > 0$ $\sigma + \delta = 1$.

Lemma 2.19: [8] For any y_1 , y_2 , ..., $y_n \in [\partial, f]$ there is

$$g\left(\frac{y_1 + y_2 + \dots + y_n}{n}\right) \le or \ge \frac{g(y_1) + g(y_2) + \dots + g(y_n)}{n},$$

where g(y) is convex downwards or upwards on $[\partial, f]$.

Definition 2.20: [6] $\forall y_1, y_2 \in J \in (0, +\infty)$ and $h \subseteq (0,1)$, there is

$$g(y_1^h y_2^{1-h}) \le hg(y_1) + (1-h)g(y_2).$$

Then g(y) be a GA-sub convex function on J.

Theorem 2.21: [8] If g(y) be a GA-convex function on $(\partial, f) \in (0, +\infty)$, then $g(e^y)$ be a GA-sub convex function on $(\ln \partial, \ln f)$, $\forall y_1, y_2 \in (\partial, f)$ and $h \in (0,1)$.

Theorem 2.22: [8] If g(y) be a GA-concave on $J \in (0, +\infty)$, $y_i \in J$, $\lambda_i \in \mathcal{R}$ (j = 1, 2, ..., r), $\lambda_1 + \lambda_2 + \cdots + \lambda_r = 1$ then

ISSN: 2643-640X

Vol. 9 Issue 7 July - 2025, Pages: 14-17

$$g(y_1^{\lambda_1}y_2^{\lambda_2} \dots y_k^{\lambda_k}) \leq \lambda_1 g(y_1) + \lambda_2 g(y_2) + \dots + \lambda_k g(y_k) (\sum_{j=1}^k \lambda_j = 1, \lambda_j > 0).$$

Theorem 2.23: [3] If $g: [\partial, f] \to (0, +\infty)$ be a GA-Concave, then $\left(\frac{1}{e} \left(\frac{f^f}{\partial^{\partial}}\right) \frac{1}{f - \partial}\right) \le \frac{1}{f - \partial} \int_{\partial}^{f} g(y) \ dy \le \left(\frac{1}{\ln f - \ln \partial} - \frac{\partial}{\partial - f}\right) g(\partial) + \left(\frac{f}{\partial - f} - \frac{1}{\ln f - \ln \partial}\right) g(f).$

References

- [1] Astorne-Figari, C. (2010). Convex Sets and Concave Functions Washington University in St. Louis.
- [2] Cha, L. (2004) Convex functions and inequalities. Journal of Ningbo Vocational and Technical College, 8, 3.
- [3] Hua, Y. (2008). Hadamard-type inequalities for Ga-convex functions. College Mathematics, 24, 3.
- [4] Simon, Concave and convex functions Chapter 21, p.505-522.
- [5] Song, Z. and Wan, X. (2010). Hadamard-type inequalities for Ga-convex functions. Science, Technology and Engineering, 23, 3.
- [6] Wu, S. (2004). Ga-convex functions and the Poincaré-type inequality. Journal of Guizhou Normal University (Natural Science Edition), 2, 52-55.
- [7] Xia, H. (2005). Convex functions and inequalities. Journal of Changzhou Institute of Technology, 18, 3.
- [8] Zhao, D. (2024). The application of convex function and GA-convex function. Journal of Theoretical and Natural Science