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1 .Introduction
"In recent years, an important progress has been made in the study of the asymptotic behaviour of evolution equations in infinite-
dimensional Banach spaces. Significant progress has been made in this direction pointing out that an impressive list of classical
problems can be treated using the theory of linear LRDSs(see, for example, Sacker and Sell [17], Chow and Leiva [5]-[8], Chicone
and Latushkin [4] and Latushkin, Montgomery - Smith and Randolph [13]). There have been obtained results concerning dichotomy
of linear skew-product flows over locally compact Banach spaces (see Latushkin, Montgomery-Smith and Randolph [13]) and
dichotomy of linear LRDSs over compact Hausdorff spaces, respectively (see Chow and Leiva [6], [7] and [8]). The asymptotic
behaviour of the linear skew-product flow has been also characterized in terms of spectral properties of the evolution semigroup
associated to the skew-product flow (see Latushkin, Montgomery-Smith and Randolph [13]).
Skew-product semiflows which is an extension of the classical concept of exponential stability for time-dependent linear differential
equations in Banach spaces (see, for example, Datko [10] and Daleckii and Krein [11]). We give necessary and sufficient conditions
for p -uniform exponential stability of linear LRDSs using a Banach function spaces technique. We not only answer questions
concerning stability of linear LRDSs but also obtain generalizations of some well-known results due to Datko ([10]), Zabczyk ([18]),
Neerven ([15]) and Rolewicz ([16]). The theory developed here is applicable for a large class of systems described in Chow and
Leiva ([5]-[8]). M. Megan A. L. Sasu B. Sasu [14] give necessary and sufficient conditions for uniform exponential stability of
evolution equations in Banach spaces. K. Horbacz , J. Myiak and T. Szarek, [12] They consider a stochastic process generated by
random dynamical systems on Banach spaces and they show that Under the suitable assumptions this process is weakly convergent
to some limit .

A. Barbata, M. Zasadzinski , R. Chatbouri and H. Souley Ali [3], they study the uniform asymptotic stability in probability when a

nonlinear stochastic differential equation does not have a trivial solution.

2. Notations and Preliminaries

In this section we shall present some definitions, notations and results about RDSs and Matric function spaces.

We begin with the notion of RDS on the trivial Matric bundle € = Q x X, where X is a fixed Matric space - the state space - and
(Q, A, P) is a probability space. The set B(X) denoted to the all bounded (continuous) operators from X into itself.

Definition 2.1 [1,9]. A metric dynamical system (MDS) is the tuple (R, Q, A, P, 0) , if it has the following properties:
(f1) 6(0,w) = w; forall w € Q;

(f2)0(s + t,w) = 6(s,0(t, w)); forall (s,t,w) € R? X Q;

(f3) 6 : Rx Q — Q is measurable, and

(f4) P(6,A) = P(A), forallt e Rand A € A .

Definition 2.2 [1,9] A random variable r: @ — R* is called tempered random variable (TRV), if
supier{e ™ [r(8,w)|} < oo, foreveryx>0and w € Q.

or equivalently if
tlir}_l |Tlllog|r(6?tou)| =0,forw € Q.
In the following we will make simple modification on a definition of RDS given in [1,9].
Definition 2.3[1]: A pair (6, ®) is said to be a random dynamical system (RDS)on € =Qx X if 6 isaMDSon Q and @ : R X
Q — B(X) admit the following properties:
(s1) (0, w) = I, the identity;
(S2) d(t + s,w) = &(s5,0,w)P(t,w);forallw e Q,s,teR;
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(s3) P {w: tlir51+ D0, w)x = x} = 1 uniformly in the following sense: for every x € X and every TRV ¢ there is § = §(x; €) > 0 such

that
P{w: ||®(t,w)x — x|]| < e(6,w)} =1; forall0 < ¢t < &.

Example 2.4.[9]: Let 8 MDS on the compact Hausdorff space Q (which can be considered as a probability space) and let S =
{S(®)}:>0 be a C° —semigroup on the Banach space X. For every strongly continuous mapping D: Q — B(X) there is a linear RDS
(6,®D) on € = Q x X such that

®D(t,w)x = S(t)x + fOtS(t —5)D(Bsw)®PD (s, w)x ds
forall (t,w,x) ERX QX X.
The RDS (6, @) is called the RDS generated by the triplet (S; D; o).

Remark 2.5. If (8, ®) isaRDS on & = Q x X, then
D(nt,w) = O(t,0(n_1): @) © ..o P(t, 05,w) 0 DL, 0,w) ° P(t, w)
forall (n,t,w) ENXR X Q.

3. Uniformly Exponentially Stable
In this section we will study the Uniformly Exponentially Stable in Random Dynamical Systems (RDS).
First we generalize an important result given in [6].

Proposition 3.1. If (8, ®) is a RDS on £ = Q x X, then there exist constant « > 0 and a TRV M:Q — [1, o) and such that
d(D(t,w)x,0) < M(O,w)e®, (t,w) ER X Q
Proof We claim that there is k > 0 such that
M(w) = sup{d(®(t,w),0):w € Q,0 <t <k} < oo,
Suppose that there are sequences w, € Q, t,, € R* such that t,, — 0" and d(®(t,, w,),0) > n, implies that x € X such that
{d(®(t,, w,)x,0):n € N}
is unbounded. This contradicts the fact that
P{w: Jlim, ®(0,w)x = xf=1.
Therefore M(w) < co.
Since ®(0,w) =1, then M(w) = 1.
Now fix t € R*. Let m be an integer satisfying m < i <m+1,ie,km <t <km+ k. Forevery w € Q we admit
d(®(t, w),0) = d(®(t — km + km, w), 0)

=d(®(t —-km+km—k+k w),0)

=d(@®(t—-—km+k(m—-1)+K,0).0)

=d(®({t —km+k(m—1),0,w) o Pk, w),0).
Now putting

Wy = W, W = 0wy, Wy = 0wy, ..., Wy = 0Wpm_1 ;
we get the following
d(®(t,w),0) = d(P(t — km, w,) Pk, Wp—q) ... P(k, w)P(k, wg), 0)
< M™(w) < M.M7*(w)

If we put a = (i) In M (w), then
d(®(t,),0) < M(w)e®.
Definition 3.2. Let (8, ) be RDS on &€ = Q x X, where X is a metric space with metric d and 0 € X is an equilibrium point. The
system is said to be :
uniformly global exponentially stable (UGES) if for every (t, w,x) € R* x € there isa TRV x:Q — (0, ) and a constant A > 0
such that
d(e(t,w)x,0) < M(6,w)e *d(x,0) 3.1
Proposition 3.3. The RDS (6, @) is uniformly exponentially stable if there are t, > 0 and ¢ € (0, 1) such that
d(P(t,w),0) <c,we€Q,d(P(t,w)0) EB
For every bounded subset B € X.
Proof: Suppose that M: Q — [1,0) be a TRV and a > 0 as in Proposition 3.1. Let v > 0 such that c = e 0. Let w € Q be fixed.
If t e R* therearen € Nand € [0,t,),t = nty+ r. Then
d(®(t, »),0) < d(P(r, 0y, 0),0).d(P(nty, w), 0)
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< Me®0d(D(tg, Oin-1)t, @), 0) ... d(P(to, 0, ), 0)d (P (g, w), 0)
< M(0,w)e%oe ™0 < N(O,w)e v,
Where N(6,w) = M(B,w)e@¥ito
So, (8, @) is uniformly exponentially stable.
Theorem 3.4. The RDS (8, ®) is UES if and only if there are Matric sequence space B € B(N) and {t,,} € R* such that
I) Supnltn+1 - tnl < o,
i) the sequence

Ppx:N— R*; (pw,x(n) = d(P(t,, w)x,0)
be in B for every (w; x) € &;
iii) there is a function K:X — (0,1) satisfying
Pl < K@), (w;x) €E. (3.2)
Proof: The " if" It is direct by choose B = #* and t, = n.
The "only if" part; There are two possible cases.
Case 1.T = sup, t, < o0,5s0
d(®(T, )x,0) < d(P(T — t,,0,,w)x,0) .d(P(t,, w)x, 0)
< Me“T||®(t,, w)x|l = 9 z(M), n EN, (w;x) € €
where ¥ = Me®*Tx and M(w) = 1; a > 0 are in Proposition 3.1. So
d(®(T, w)x,0)y 1 < Poz, NEN =N-— {03.
The inequality (3.2) implies that
Fp(m)d(®(T, w)x,0) < |¢, |, < K(X), n €N
Because € B(N) , then
O(T,w)x =0, (w;x) EE
and so (6, @) is UES.
Case 2. Assume that {t,,} is unbounded sequence . Since B € B(N), it follows that there is ¢ > 0 with
|X{"}|B >c,n€N,
From
(pw,x(n))({n} < Py M € N: (w' X) €E.
So
c.d(®(t,, w)x,0) < |<Pw,x|3 <Kx),n€N, (w;x) € E.
By the uniform boundedness principle there is N > 0 satisfy
d(®(t,, w),0) <N, neN,weQ.
Ifw € Qand > ¢, , then the unboundedness of {¢t,} and (i) implies that there is n(s) € N such that
tn(s) <s< tn(s) +k
where k = sup, |t +1 — tn| . Then
d(P(s, w),0) < d(P(s = tos) + tas) @), 0)

= d(q) (S — tn(s)' th(s)w) q)(tn(s)' (/)), 0)

=d (QJ (S = tas) th(s)w) , 0) . d(q)(tn(s), (/)), 0)

< MNe**, s > ty, w € Q.
It follows that

d(®(s,w),0) < L := max {Mekto, MNe*?}, s € R*, w € 0.
Define a sequence (k) by ko = 0; k,, = min{j: t; > t;, }. So k, — 0 and
tj < ty,, j€{0,...k;},n EN.
From
d(CD(tkn, w)x, 0) <d (CD (tkn -t Ht].w) , 0) . d(dJ(tj, w)x, 0)

< L.d(®(tj, w)x,0), j €{0,...,ky},n €N.

it results
d(d)(tkn,a))x, O)X{O’__'kn} <Lp,n€EN, (wx)€EE
and hence
d(®(ty,, w)x,0) Fg(k, +1) <LK (x),n €N, (w,x)€E
It follows that from there is K > 1 with
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d(®(ty,, ®),0) Fp(k, +1) <K, n€N, wE€ Q.
(The boundedness ). Since B € B(N) then 3 m € N with
d(CD(tkm,w),O) < g w E Q.

By Proposition 3.2 we get the result.

4. Lyapunov Characterization p — Uniform Exponential Stability

Here, we will generalize the concept of Uniform Exponential Stability for LRDS, which was introduced in Section 3, and characterize
this concept using Lyapunov.

we consider the function p: Q x X — R* with the following properties:

(P1) p(,x):Q — R*, is measurable for every x € X;

(P2) p(w,):X — R*, is continuous for every w € £2;

Definition 4.1 A RDS (8, ®) is called p — uniformly global exponentially stable ( p —UGES) with respectto p: QA x X — R* if
thereisa TRV M: Q — (0,00) and a A > 0 such that
d(®(t,w)x,0) < p(w,d(x,0))e ™, V(t,w,x) ER* x A xX. (4.1)
In the following, we present a simple modification of the Lyapunov function given in [2].
Definition 4.2 A function L : R* x Q x R™ — R is said to be Lyapunov-Like function for (8, ®) if
(1) L(, w,-): RT x R® — R is a continuously differentiable in (¢, x) € R* x R™ for every w € Q,
(2) L(t,,x):Q — R is measurable forevery (t,x) € R* x R" and
(3) there exist positive numbers A,, 15, 13,p,q,7, & and a TRV k, such that for every (t, w, x) € RT x Q x R™:
Ad(®(t, w)x.0)V? < L (t, w, ®(t, w)x) < A,d(P(t, w)x.0)Y9, (i)

2 L(t, 0, D(t, w)X) < =25 d(D(t, )x. 0)F — k(B,w)e", (ii)

Theorem 4.3: The RDS (6, ®) is p —UGES if it admits a Lyapunov Like function and satisfy the following for every (t, w,x) €
R* x O x R™:
(@) there exists y > 0 with
L (t, 6,0, ®(t, )x) — [L (t, 6,0, D(t, )x)]r < ye~5t, where § > A,/29"
(b) my = k(w), for every w € Q where m = 2,/23/"
Proof Consider Q(t,8,w, ®(t, w)x) := L (t,0,w, ®(t, w)x)e™ , where L (t, w, x) is a Lyapunov-Linke function.
d d
aQ(t, 0,0, ®(t, w)x) = emtaL (t, 0,0, ®(t,w)x) + mL (t, 8,.w, P(t, w)x)e™
From (ii) for all (t, w,x) € RT X Q x R™ we have
a 1
EQ(t' O,w, ®(t,w)x) < [—/13d(d>(t, w)x.0)r — k(w)e 5| e™
+mL (t, 6,0, P(t, w)x)e™:.
From the right hand of (i) we have
a
1 a
—d(q)(t, w)x. 0); < [L (t,w@t}fb(t,w)x)]r ) d(q)(t, w)x. O)l/q > L (t,Htw/,ltb(t.w)x)
2 2
which implies that

%Q(tl gtwl q)(tl Cl))x) S [_ ﬂzﬁ [L (tl Htw! q)(t! (’J)x)]g - k(w)e_at em(t_tO)

+mlL (t, 0,0, P(t, w)x)e™tto)
From the condition (a) we obtain
iQ(t, 0,0, D(t,w)x) < mye %te™ — k(w)e %te™
at
= (my — k(w))e™t,
Hence

t
Q(t, 0w, P(t,w)x) — Q(0, w,x) < f (my — k(6,w))e™ s ds
0

t
Q(t, 6,0, P(t,w)x) — Q(0, w,x) < f (my — k(6,w))e™ s ds
0

= fot mye™=9s ds — fot k(0,w)e™ s ds

— ™ (m-&t__™ _ rt (m—6)s
5 € ) Jy k(B.w)e ds
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Then
Q(t, w, d(t,w)x) < Q(0, w,x) + 5) p(m=8)t _ (r:zn—é)_f k(6,w)e™ s ds
— W _o(m=6)t my _ (m-8)s
=Q(0, w, x) 5 m) + 5om f k(6,w)e ds

k(8,w)e™=9s ds

N

Since = )e(m 8t > 0 and (0 w, x) = L (0, w, x) , it follows that
) - fo k(B,w)e™=%)s ds |

From the right hand of (i) we obtain
Ld(®(t, w)x.0)Y? < L (t, 0,0, P(t, 0)x) < d(P(t,w)x.0)/q
1
Hence Q(t, 0,0, ®(t, w)x) < A,d(x,0)7 + + ’"_fn) — [, k(850)e ™9 ds.

&
From the left han of (i)
d(®(t,w)x,0) < [L (t, w,P(t,w)x)/A,]? , then

d(®(t, )x, 0) < Q(t,0rww,d(t,w)x)]P _ [Q(t,@tww,¢(t,w)x) p o-mpt

ﬂ- emt 11
P
< Apd(x, 0)q+(6_m)—f0 k(Bsw)eM=8)sqs -mpt
A1
Define
14
[/Izd(x 0y0 + s =y (B,w)e ™o ds]
p(w,x) =
I
Then

d(®(t,w)x,0) < p(w,x)e ™t
Hence (8,®)is p —UGES.
Proposition 4.4 The p —UGES implies UES .
Proof. Let M: Q) — R* be TRV and d: X — R* be a matric function on X.
The Cartesian productis M x d : O x X — Rt x R* , then the function
pi=po(Mxd):QxX— R (where u: Rt x R* — R* be a usual multiplication) satisfy (P1) and (P2).
Theorem 4.5. The RDS (8, @) with above Lyapunov-Like functionis p —UGES if there exists TRV y such that
L (t, 8,0, ®(t,w)x) — [L (t, 0,0, ®(t, w)x)]7 < y(B,w)e ™%,
where § > m = 23/25/°.
Proof. Let Q(t, 6,w, ®(t, w)x) = L (t, 6,w, P(t, w)x)e™, where L (t, 8,w, D(t, w)x) is the above Lyapunov-Like function
%Q(t, O,w,®(t, w)x) == e™ %L (t, 0,0, ®(t,w)x) + mL (t, 8,w, P(t, w)x)e™
< [-Asllx|I” — ke®te ™ [e™ + mL (¢, 8,0, P(t, w)x)e™
< —Allx||"e™ — keSt + mL (t, 6,w, P(t, w)x)e™.
Since

1
L t6rw0,0t0)D)]q

r —
d(x,0)" < 5

Then
%Q(t, O,w, ®(t,w)x) < —[L (t, 0w, P(t, w)x)]g[}g/l;/q]emt — kedt
+mlL (t, 0,0, P(t, w)x)e™
< m{L (t, 0,0, ®(t, w)x) — [L (t,0,w, D(t, w)x)]g} e™ — kebt
From the condition of theorem we obtain:

[ME

2 d(x,0) = |

iQ(t, O, w, P(t, w)x) < mye™m=8t _ ket
7t t Y
t

t
Q(t, 0,0, ®(t, w)x) — Q(0,w,x) < j mye™=9s ds — kJ e% ds
0

0
(m-8) _k _
< ( 5) [e 8)t 1] 6[e5t 1]
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My My (m-&)¢t k_k st
S6mm  6-m ¢ t5Ts¢
my k
= (6-m) ts
my k
Q(t, 6w, @(t, w)x) < Q(0, w,x) + Gom +3
my k
SLOwx) + s +%
If k> 0then
gy ™ Lk
Q(t, 0w, @(t, w)x) < A, ||x|[? + am T

Define p:QxX - RYby p(w,x):=2,d(x,0)7+ % + %_
Since 4,d(®(t, w)x,0)? < L (t, 0,0, ®(t, w)x), then
d(®(t, w)x,0) < [L (t, 8,0, P(t, w)x) /A, ]MP
S [Q (t! etwl q)(tl w)x)/ﬂ'lemt]l/p

<[ p(w,x)/1]"Pe v
Hence the system (0, ®) is p —UGES.
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