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Abstract: This research explores the basic concepts and applications of numerical optimization in the field of engineering. The study 

begins with an introduction to the topic, highlighting the importance of numerical optimization in solving complex engineering 

problems. It delves into various aspects of optimization. The third chapter focuses on practical applications of optimization in 

engineering. It studies how to apply numerical optimization techniques in various engineering fields, such as Global Positioning 

System (GPS), structural optimization, process optimization, control optimization, product design optimization, and energy 

optimization as well as other applications. Finally, the conclusion and future work are included. Result  One of the important 

conclusions in this research is the use of numerical optimization concepts in creating and developing engineering applications in 

various fields by introducing these concepts into their projects and developing them in a way that is compatible with the development 

taking place. 
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 لنتائج

بمختلف  الهندسيةمن الاستنتاجات المهمة في هذا البحث هو استخدام مفاهيم التحسين العددي في انشاء وتطوير التطبيقات 

 .مجالاتها في أدخال تلك المفاهيم في مشاريعهم وتطويرها بما يلائم التطور الحاصل

 

 لكلمات المفتاحيةا

 التطبيقات الهندسية, الرياضي ,برنامج, خوارزميات, القيم العليا,القيمالسفلى,مخطط مسار روبوت. ،مفاهيم التحسين العددي

  

 

Introduction  

 

     Numerical optimization is the process of finding the optimal solution to a mathematical problem by minimizing or maximizing a 

given function. Numerical optimization traces its origins to antiquity, where early mathematicians and scientists employed 

rudimentary techniques to address geometric, physical, and astronomical challenges (Boyd & Vandenberghe, 2004, p. 12).  

     Among the earliest documented methods was the method of exhaustion, utilized by Greek mathematicians such as Archimedes to 

approximate the area of a circle through inscribed and circumscribed polygons (Heath, 1921, p. 91).  

    During the Renaissance, scholars like Leonardo da Vinci and Gerolamo Cardano advanced optimization by incorporating algebraic 

formulations into problem-solving (Stillwell, 2010, p. 134).  

     The formalization of calculus in the 17th and 18th centuries marked a pivotal shift, enabling the development of analytical 

optimization techniques. Notably, Joseph-Louis Lagrange introduced the steepest descent method in 1762, laying the groundwork 

for gradient-based optimization (Lagrange, 1788, as cited in Nocedal & Wright, 2006, p. 22). 

    The 19th and 20th centuries witnessed the application of optimization to industrial and scientific problems, driven by 

advancements in mathematics and computing. A landmark achievement was George Dantzig’s simplex method (1947), which 
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provided an efficient algorithm for linear programming and transformed large-scale decision-making (Dantzig, 1963, p. 27). The 

advent of digital computers in the mid-20th century further accelerated progress, facilitating the implementation of iterative 

algorithms like gradient descent—refined by Bellman (1957) and later adapted for machine learning by Rumelhart and McClelland 

(1986, p. 533) (Rumelhart et al., 1986). Subsequent decades saw the emergence of metaheuristic approaches, including simulated 

annealing (Kirkpatrick et al., 1983, p. 671), genetic algorithms (Holland, 1975, p. 89), and particle swarm optimization (Kennedy & 

Eberhart, 1995, p. 1942), designed to tackle non-convex and multi-objective problems. 

     In the 21st century, optimization has become indispensable to machine learning and artificial intelligence. Techniques 

like stochastic gradient descent (Bottou, 2010, p. 177) and reinforcement learning (Sutton & Barto, 2018, p. 105) underpin the 

training of neural networks and autonomous systems. The field remains dynamic, with ongoing research into quantum optimization, 

distributed algorithms, and real-time adaptive methods (Boyd et al., 2011, p. 15).  

    As illustrated in Figure 1, modern numerical optimization involves iterative refinement of solutions, balancing precision and 

computational efficiency. The historical trajectory of optimization—from ancient heuristics to AI-driven methods—highlights its 

enduring role in scientific and engineering breakthroughs. 

 

 

 

 

Optimization: A Mathematical Framework for Quantitative Problem-Solving 

      Optimization, also known as mathematical programming, encompasses a collection of mathematical principles and 

methodologies designed to address quantitative challenges across diverse disciplines, including physics, biology, engineering, 

economics, and business (Boyd & Vandenberghe, 2004, p. 7).  

      The field emerged from the recognition that seemingly disparate quantitative problems share fundamental mathematical 

structures, allowing them to be formulated and resolved using a unified set of optimization techniques. Historically, the 
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term mathematical programming—synonymous with optimization—originated in the 1940s before "programming" became 

associated with computer coding (Dantzig, 1963, p. 24).  

     Modern mathematical programming involves the computational implementation of these methods, the development of algorithms 

to solve optimization problems, and the theoretical analysis of their mathematical properties. Advances in computing have 

dramatically expanded the scope and complexity of problems that can be addressed, with optimization methodologies evolving 

alongside progress in computer science, operations research, numerical analysis, game theory, and related fields (Nocedal & Wright, 

2006, p. 15). 

Core Components of Optimization Problems 

    A typical optimization problem consists of three key elements. The first is an objective function—a single numerical quantity to 

be maximized or minimized. Examples include maximizing a portfolio’s expected return, minimizing production costs, or optimizing 

the arrival time of a vehicle (Luenberger & Ye, 2008, p. 45).  

     The second component is a set of decision variables, which represent adjustable parameters influencing the objective. These may 

include investment allocations, resource distributions in manufacturing, or policy choices in political campaigns. The third element 

comprises constraints, which restrict the feasible values of the variables. For instance, resource allocations cannot exceed available 

quantities or fall below zero (Bazaraa et al., 2013, p. 72). 

Classification of Optimization Techniques 

    Optimization problems vary in mathematical structure, necessitating distinct analytical approaches. Linear programming (LP) 

involves optimizing a linear objective function subject to linear constraints, with no variables raised to powers greater than one 

(Vanderbei, 2020, p. 33).  

    In contrast, nonlinear programming (NLP) deals with nonlinear objective functions or constraints, incorporating squares, 

trigonometric functions, or variable products (Boyd & Vandenberghe, 2004, p. 129).  

      While this discussion focuses on LP and NLP, other critical categories include stochastic programming, where randomness 

affects objectives or constraints (Birge & Louveaux, 2011, p. 58); network optimization, which maximizes flow efficiency (Ahuja 

et al., 1993, p. 104); and combinatorial optimization, involving discrete decision spaces, such as facility location assignments 

(Papadimitriou & Steiglitz, 1998, p. 212). Figure 2 summarizes these classifications. 
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Engineering Applications with in the Concept of Optimization 

 

     Optimization is a powerful tool that engineers use to design and improve systems, processes, and products. From designing 

stronger and lighter structures to improving energy efficiency, optimization can have a significant impact on the performance and 

efficiency of engineering systems. In this chapter, we will explore the various applications of optimization within engineering, and 

provide an example of each application. 

 

 

Flow chart of the most important applications of optimization in engineering 
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1: Global Positioning System (GPS): 

     The Global Positioning System (GPS) represents a prominent engineering application of optimization techniques, employing 

advanced algorithms to determine a receiver's precise terrestrial coordinates by analyzing signals from orbiting satellites (Kaplan & 

Hegarty, 2017, p. 215).  

     The system solves a complex multiliterate problem through numerical optimization, minimizing positional errors caused by 

atmospheric interference, signal multipath effects, and satellite clock inaccuracies (Misra & Enge, 2011, p. 143). By formulating the 

positioning challenge as a weighted least squares optimization problem, GPS receivers achieve meter-level accuracy through iterative 

refinement of pseudo range measurements from multiple satellites (Langley, 1999, p. 48). Beyond basic positioning, optimization 

plays a crucial role in intelligent navigation systems, where Dijkstra's algorithm and its variants compute optimal routes by 

minimizing travel time or distance while accounting for dynamic constraints including traffic patterns, road conditions, and speed 

limits (Bertsekas, 2015, p. 312).  

       This dual application of optimization - for both precise localization and route planning - has transformed modern transportation 

systems, yielding significant improvements in fuel efficiency, traffic management, and logistical operations (Yang et al., 2020, p. 

1027). As illustrated in Figure X, the integration of optimization methodologies at multiple system levels makes GPS a paradigmatic 

example of applied mathematical programming in geospatial engineering. See figure below. 

 

 

 

Figure: Simplified figure showing GPS technology 

 

                                      

 

2: Structural Optimization:  

      Structural optimization represents a critical methodology in engineering design, focusing on developing load-bearing structures 

that simultaneously minimize mass and material consumption while meeting stringent performance and safety requirements (Bendsøe 

& Sigmund, 2003, p. 4). This process employs advanced computational techniques including gradient-based optimization, genetic 

algorithms, and simulated annealing to systematically identify optimal design parameters (Christensen & Klarbring, 2008, p. 112). 

A paradigmatic application emerges in truss structure design, where interconnected triangular elements efficiently distribute loads in 

bridges, towers, and roofing systems (Haftka & Gürdal, 2012, p. 67). 

     The optimization process for a truss bridge exemplifies this approach. Engineers first define key design variables including 

member lengths, cross-sectional areas, and topological configuration (Kirsch, 1993, p. 23). Performance constraints are then 

established, typically encompassing maximum allowable stresses, deflection limits, and safety factors (Rozvany, 2001, p. 145). 

Consider a 50-meter span bridge: optimization algorithms iteratively evaluate potential designs against these constraints while 
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progressively reducing structural weight.     Modern finite element analysis coupled with sensitivity-driven optimization can achieve 

weight reductions of 15-30% compared to conventional designs (Zhou & Rozvany, 2001, p. 712). 

    This methodology yields structurally efficient solutions that satisfy all safety requirements while minimizing material costs. The 

resulting designs demonstrate how mathematical optimization transforms engineering practice, enabling safer, more economical 

structures (Deaton & Grandhi, 2014, p. 89). As computational power increases, structural optimization continues to expand its 

applications from micro-scale components to entire architectural systems (Sigmund & Maute, 2013, p. 103). 

 [17]. 

 
Figure: Simplified figure showing Structural optimization 

 
 

3: Energy Optimization: 

     Energy optimization represents a critical engineering discipline focused on enhancing the efficiency of energy systems while 

maintaining operational performance, with key objectives including energy consumption reduction, environmental impact 

mitigation, and cost minimization (Wang et al., 2017, p. 45). This field employs methodologies such as energy audits, computational 

modeling, and energy-efficient design to evaluate and refine system performance across domains like HVAC systems, industrial 

processes, and renewable energy infrastructure (Hasanuzzaman et al., 2021, p. 112). 

      A prominent application involves optimizing building HVAC systems, which account for approximately 40% of commercial 

building energy consumption (Pérez-Lombard et al., 2008, p. 18). The optimization process begins with comprehensive energy 

audits, collecting data on energy usage patterns, equipment efficiency, and environmental conditions. Computational fluid dynamics 

(CFD) simulations and thermodynamic modeling then identify inefficiencies, such as suboptimal airflow distribution or excessive 

thermal losses (Afram & Janabi-Sharifi, 2014, p. 1563).  

     Implementations may include retrofitting variable frequency drives (VFDs) for fans, redesigning ductwork to minimize pressure 

drops, or integrating smart thermostats with occupancy-based control algorithms—interventions demonstrating 20–35% energy 

savings in field studies (Huang et al., 2019, p. 723). 

    In renewable energy systems, optimization techniques prove equally vital. Photovoltaic system design exemplifies this, where 

panel orientation, tilt angle, and array spacing require multi-objective optimization to maximize irradiance capture while minimizing 

shading losses (Duffie & Beckman, 2013, p. 287). Advanced algorithms balance these parameters against local weather patterns and 

topographic constraints, often improving annual energy yield by 10–15% compared to conventional designs (Lave & Kleissl, 2013, 

p. 492). 

    These applications underscore optimization's transformative role in developing sustainable engineering solutions. By 

systematically eliminating inefficiencies through mathematical modeling and data-driven design, engineers achieve systems that 

reconcile economic viability with environmental stewardship—a necessity for addressing global energy challenges (IEA, 2022, p. 

67). 
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Figure: Simplified figure showing Energy optimization 

 

Figure: A simplified figure showing energy optimization and keeping pace with modern time 

 

4: Robotic Path Planning 

    Path planning represents a fundamental challenge in robotics, where optimization techniques enable efficient navigation through 

complex environments while minimizing energy consumption, travel time, and collision risks (LaValle, 2006, p. 27). Modern 

approaches integrate multi-objective optimization to balance competing priorities such as: 

 1-Map Representation 

2-Obstacle Detection and Representation 

3-Path Planning Algorithms  

4-Collision Avoidance 

5-Constraints and Optimization Criteria 

6-Real-Time Adaptation 

7-Simulation and Validation 

8-Implementation and Execution 

   Robotic path planning represents a critical application of optimization techniques across multiple domains, enabling intelligent 

navigation in complex environments. The integration of optimization algorithms enhances operational efficiency, safety, and 

adaptability in various robotic systems (Choset et al., 2005, p. 35).  
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 الخلاصة

البحث فهما شاملا لمفاهيم التحسين العددي وتطبيقاتها في الهندسة. تسلط الدراسة الضوء على أهمية التحسين  يوفر هذا    

في حل المشكلات الهندسية المعقدة، مما يمكن المهندسين من تحقيق الحلول المثلى لمختلف تحديات التصميم والتحكم 

عددي، ا في ذلك البرمجة الخطية والبرمجة غير الخطية والتحسين الوالتشغيل. يستكشف البحث تقنيات التحسين المختلفة، بم

مما يوفر نظرة ثاقبة لمزاياها وقيودها. من خلال فحص التطبيقات الهندسية في العالم الحقيقي، يصبح من الواضح أن التحسين 

سين التي التكلفة. أثبتت طرق التح العددي يلعب دورا مهما في تحسين كفاءة الأنظمة الهندسية وموثوقيتها وفعاليتها من حيث

 تمت مناقشتها في هذا البحث فعاليتها في تحسين تصميم الهياكل والعمليات والمنتجات، وكذلك في تعزيز كفاءة الطاقة وأدائها
 

 

 

 

                                                                                         ستنتاج  الا

د من إلا أن هناك العدي الهندسة،في حين أن هذا البحث قد قدم نظرة عامة شاملة على مفاهيم التحسين العددي وتطبيقاتها في 

السبل للعمل المستقبلي التي يمكن أن تعزز هذا المجال. يمكن استكشاف المجالات التالية لتعزيز فعالية وكفاءة التحسين 

 العددي:

خوارزميات التحسين المتقدمة: يمكن أن تركز الأبحاث المستقبلية على تطوير وتحسين خوارزميات التحسين المتقدمة التي  .1

 يمكنها التعامل مع المشكلات الهندسية المعقدة بشكل أكثر كفاءة. 

 غيرات العشوائية. عدم اليقين والتحسين العشوائي: تتضمن العديد من المشكلات الهندسية أوجه عدم اليقين والمت .2

 .التحسين متعدد الأهداف: غالبا ما تنطوي المشكلات الهندسية على أهداف متضاربة، وقد لا يكون إيجاد حل أمثل واحد ممكنا .3
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