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Abstract: This paper examines the evolution and role of Rule-Based Expert Systems (RBES) in cybersecurity threat detection, 

highlighting their strengths, limitations, and the growing shift toward hybrid AI approaches. RBES have historically offered clear, 

rule-driven methods for identifying known threats, but their static nature struggles to keep pace with today’s fast-changing cyber 

landscape—especially against zero-day exploits and advanced persistent threats (APTs). To address these challenges, researchers 

are increasingly turning to hybrid AI systems that combine symbolic reasoning with machine learning and deep learning. These 

neuro-symbolic models offer both adaptability and transparency, making them well-suited for high-stakes cybersecurity 

environments. This study explores the architecture of RBES, compares traditional and hybrid threat detection methods, and presents 

real-world applications and empirical findings. It also discusses ethical concerns such as bias, accountability, and explainability. 

Ultimately, the paper argues for the development of intelligent, adaptive, and trustworthy AI systems to strengthen cyber defense in 

an ever-evolving threat landscape. 
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Introduction 

In today’s hyper-connected world, cybersecurity threats are evolving faster than ever. From ransomware and phishing to 

advanced persistent threats (APTs), organizations face a constant stream of malicious activity that puts critical infrastructure and 

sensitive data at risk. Detecting these threats effectively is no longer optional—it’s essential. 

Artificial Intelligence (AI) has long played a key role in cybersecurity, with Rule-Based Expert Systems (RBES) being among the 

earliest tools used to mimic human decision-making. These systems rely on clear “if-then” rules to identify known attack patterns, 

offering transparency and logical reasoning. However, as cyber threats become more dynamic and unpredictable, the limitations of 

static rule-based systems—such as poor adaptability and the difficulty of updating rules—have become increasingly apparent[1-4]. 

To keep pace, the field has shifted toward machine learning (ML) and deep learning (DL), which excel at recognizing patterns and 

adapting to new data. Yet, these approaches often operate as “black boxes,” making it hard to understand how decisions are made—

an issue that’s especially problematic in high-stakes environments like cybersecurity [5-8]. 

This paper explores the emerging solution: hybrid AI, particularly neuro-symbolic systems that blend the strengths of symbolic 

reasoning with the adaptability of neural networks. These systems aim to deliver more accurate, flexible, and explainable threat 

detection.  

By reviewing the evolution of RBES, analyzing current AI-driven methods, and examining ethical concerns such as bias and 

accountability, this research highlights the need for intelligent and trustworthy AI solutions in the ongoing battle against cyber threats 

[9-10]. 

 

Objectives 

This research paper sets out to achieve the following key objectives: 

 Clarify the architecture and functionality of Rule-Based Expert Systems (RBES) in the context of cybersecurity, detailing their 

core components and operational principles. 

 Analyze the historical role and limitations of RBES, particularly their effectiveness in detecting known threats and their 

shortcomings in adapting to evolving cyberattack strategies. 

 Investigate the rationale behind hybrid AI approaches, focusing on how symbolic AI can be integrated with machine learning 

and deep learning to enhance threat detection capabilities. 

 Review empirical studies and real-world case applications that compare the performance of traditional RBES with modern hybrid 

AI systems in identifying and responding to cybersecurity threats. 
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 Identify the major challenges in deploying AI-driven cybersecurity solutions, including issues of scalability, adaptability, and the 

difficulty of acquiring and maintaining expert knowledge. 

 Examine the ethical dimensions of AI in cybersecurity, such as the need for transparency, the risks of algorithmic bias, and the 

importance of accountability in automated decision-making. 

 Propose future research directions aimed at developing intelligent, explainable, and adaptive AI systems that can effectively 

respond to the dynamic nature of cyber threats. 

 

Problem Statement 

Modern cyber threats are growing not only in volume but also in complexity and unpredictability. Traditional cybersecurity 

tools, particularly Rule-Based Expert Systems (RBES), have played a foundational role in detecting known threats using predefined 

rules. However, their static nature makes them increasingly ineffective against emerging threats like zero-day exploits and 

polymorphic attacks. Updating these systems requires significant manual effort and financial resources, creating a “knowledge 

acquisition bottleneck” that limits scalability and responsiveness. 

Meanwhile, machine learning (ML) and deep learning (DL) have introduced powerful capabilities for identifying unknown threats 

by learning from data. Yet, these models often operate as opaque “black boxes,” making it difficult to understand or explain their 

decisions—an issue that undermines trust, complicates incident response, and raises concerns about bias and accountability [11-15]. 

The core challenge is to develop cybersecurity systems that are both adaptive and transparent. While RBES offer clarity and logic, 

they lack flexibility. ML/DL models offer adaptability but sacrifice interpretability. This tension highlights the need for hybrid AI 

systems that combine the strengths of both approaches. Neuro-symbolic AI, in particular, offers a promising path forward—

integrating symbolic reasoning with data-driven learning to create systems that are not only effective in detecting threats but also 

capable of explaining their decisions in a way that supports trust, compliance, and informed action. 

 

Literature Review 

 

Evolution of AI in Cybersecurity: From Rule-Based to Hybrid Systems 

The application of Artificial Intelligence in cybersecurity has undergone a significant transformation, marked by distinct phases of 

technological advancement and adaptation to evolving threat landscapes [16-20]. This evolution highlights a continuous effort to 

overcome the limitations of preceding paradigms and build more robust and intelligent defense mechanisms. 

 

Traditional Rule-Based Systems: Foundations and Early Applications 

Early AI in cybersecurity was predominantly characterized by Rule-Based Expert Systems (RBES) [21-24]. These systems, which 

emerged from the broader field of Knowledge-Based Systems in the 1970s and proliferated in the 1980s, were designed to emulate 

human expert decision-making. RBES operate on a set of predefined "if-then" rules, explicitly encoding domain knowledge and 

logical reasoning. This approach provided transparency, allowing users to understand the rationale behind a system's conclusions.7 

Initial applications of RBES in cybersecurity included firewalls, intrusion detection systems (IDS), and antivirus software [25-30]. 

For instance, an early IDS like IDES would compare current user behaviors to historical profiles and use expert rules to define 

normal/suspicious behavior. Antivirus software relied on signature-based detection, matching known malware signatures against a 

rule database.10 

A significant observation concerning RBES is the paradox of their early success. While expert systems were considered among the 

"first truly successful forms of AI software" and dominated AI research until the mid-1990s [31-36], their effectiveness was 

inherently constrained by their design. Their success in early cybersecurity applications stemmed directly from their ability to 

explicitly encode human expertise and provide transparent, logical decision-making, which was highly effective against known 

threats with predefined patterns [37]. However, this very strength became a critical limitation. These systems struggled with the 

inherent "brittleness" in handling out-of-domain problems, difficulties in knowledge acquisition, and the immense challenge of 

maintaining large knowledge bases. They proved inadequate against zero-day attacks and evolving threats that did not fit neatly into 

their predetermined rule sets [38]. This inflexibility ultimately contributed to the "second AI Winter" and a widespread recognition 

that traditional rule-based systems were no longer suitable for the dynamic and complex threats in modern cybersecurity 

environments. This historical trajectory illustrates that initial effectiveness in a controlled or predictable environment does not 
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guarantee long-term viability in dynamic domains like cybersecurity, underscoring the continuous need for adaptive intelligence. 

Emergence of Machine Learning and Deep Learning in Cybersecurity 

The limitations of static rule-based systems, particularly their inability to adapt to novel and evolving threats, spurred a fundamental 

shift towards machine learning (ML) and deep learning (DL) approaches in cybersecurity [39-40]. ML, defined as the field that gives 

computers the ability to learn without being explicitly programmed , analyzes vast datasets to identify patterns and anomalies, leading 

to adaptive security responses. Key types of ML include supervised learning, which is trained on labeled data (e.g., for spam 

detection), unsupervised learning, which discovers patterns in unlabeled data (e.g., for anomaly detection of novel threats), and 

reinforcement learning, which learns through trial and error (e.g., in robotics). Deep learning, a subset of ML, utilizes neural networks 

to process high-dimensional data, automatically extract features, and make complex decisions. It has revolutionized malware 

detection by scrutinizing code structure and behavior without relying on predefined signatures [41-44]. 

While ML and DL offer unprecedented adaptability and can detect previously unknown threats, a critical trade-off emerges: the 

"black box" problem. The complexity of these models, particularly deep neural networks, renders their decision-making processes 

opaque and difficult for humans to interpret. This opacity is a significant drawback in cybersecurity, where understanding why a 

particular threat was flagged is crucial for effective investigation, response, and forensic analysis. This lack of transparency can 

hinder accountability, complicate compliance with regulations that require explanations for AI decisions, and ultimately erode trust 

in the system, especially in critical security applications. Furthermore, the complexity can make these systems susceptible to 

adversarial attacks, where subtle manipulations of input data can deceive the model. The evolution from RBES to ML/DL, therefore, 

highlights a fundamental tension: gaining superior adaptability and detection capabilities often comes at the cost of interpretability. 

This inherent trade-off is a central factor driving the current development of hybrid AI [45-50]. 

Motivation for Hybrid AI: Bridging the Gap 

The limitations inherent in both purely symbolic (rule-based) and purely sub-symbolic (machine learning/deep learning) AI 

approaches have driven the emergence of hybrid AI, also known as neuro-symbolic AI. Hybrid AI aims to combine the strengths of 

both paradigms: the logical reasoning, transparency, and low data hunger of symbolic AI with the pattern recognition, scalability, 

and adaptability of machine learning. This fusion is particularly valuable in enterprise settings where trust, interpretability, and 

compliance are critical, allowing for the creation of more robust, accurate, and context-aware AI systems [51-53]. 

A deeper understanding of the motivation for hybrid AI reveals an ambition beyond mere technical integration: it seeks to emulate 

human cognitive processes more closely. The theoretical foundation for neuro-symbolic AI is often linked to Daniel Kahneman's 

"System 1" (fast, intuitive, pattern recognition) and "System 2" (slow, deliberate, logical reasoning) models of thinking.35 In this 

framework, deep learning is seen as excelling at System 1 cognition, adept at rapid pattern recognition, while symbolic reasoning is 

best suited for System 2, handling planning, deduction, and deliberative thinking. This conceptual alignment suggests that achieving 

true "intelligence" in AI, especially for complex tasks like cybersecurity, necessitates both intuitive pattern matching and explicit 

logical reasoning, mirroring how human experts operate. A system capable of both "intuitively" spotting anomalies and "logically" 

explaining why it flagged something would inherently be more effective and trustworthy. This pursuit of integrated, robust 

intelligence, drawing inspiration from human cognition, represents a significant driving force behind the neuro-symbolic AI 

paradigm [54-56]. 

Core Concepts of Rule-Based Expert Systems 

Understanding the foundational principles of Rule-Based Expert Systems (RBES) is crucial for appreciating their role in 

cybersecurity and the subsequent evolution towards hybrid AI [57-60]. 

Architecture and Components 

A Rule-Based Expert System (RBES) is a type of Knowledge-Based System (KBS) that emulates human expert decision-making.56 

Its core architecture typically comprises several key components: 

● Knowledge Base: This serves as the central repository of domain-specific facts and rules, most commonly represented as "if-

then" statements, also known as production rules.7 It encapsulates the accumulated "know-how" of human experts in a 

particular domain.8 

 

● Inference Engine: Often referred to as the "brain" of the system, the inference engine is responsible for applying the rules 

from the knowledge base to the current facts to deduce new information or arrive at conclusions and decisions. Its primary 

function is to link the defined rules with the available facts and perform logical reasoning [61-62]. 
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● Working Memory (or Database/Facts): This is a dynamic component that holds the current facts or data being processed by 

the system at any given time. As the inference engine applies rules and new information is derived, the working memory is 

updated accordingly. [63] 

● User Interface: This layer facilitates communication and interaction between the user and the expert system, providing 

mechanisms for inputting data and displaying outputs or recommendations [64]. 

● Explanation Module: A distinctive and crucial feature of expert systems, this module provides users with justifications for 

the system's conclusions and explains the step-by-step reasoning process that led to a particular decision. This transparency is 

vital for building user trust and understanding [65]. 

The explicit inclusion of a "User Interface" and, more notably, an "Explanation Module" within the core architecture of RBES 7 

reveals a foundational design principle: these systems were built with human interaction and understanding as central tenets. The 

explanation module's role in providing justification for conclusions and detailing the reasoning process stands in stark contrast to the 

later "black box" problem prevalent in pure machine learning models, where decisions are often uninterpretable [66]. This human-

centric design, despite the eventual limitations of RBES in dynamic environments, established a crucial precedent for the concept of 

Explainable AI (XAI), which is now a major research area in hybrid AI. The historical emphasis on transparency in RBES therefore 

provides a conceptual lineage for current efforts to make advanced AI systems more understandable and trustworthy [67]. 

Table 1: Core Components of a Rule-Based Expert System and Their Role in Cybersecurity 

Component Description Role in Cybersecurity Threat Detection 

Knowledge Base Repository of domain-specific facts 

and "if-then" rules, encapsulating 

human expert knowledge. 

Stores rules defining known attack patterns 

(e.g., specific malware signatures, unusual 

login attempts) and normal system behaviors. 

Inference Engine Applies rules to facts in the 

knowledge base to derive conclusions 

or make decisions. 

Processes real-time network traffic and system 

logs against predefined rules to identify 

potential threats. Determines if observed 

activity matches a malicious pattern. 

Working Memory Dynamic storage for current facts or 

data being processed by the system. 

Holds current network events, user activities, 

system states, and temporary data relevant to 

the ongoing threat analysis. Updated as new 

information is gathered or inferred. 

User Interface Facilitates interaction between the 

user and the system for input and 

output. 

Provides a dashboard for security analysts to 

input parameters, view alerts, and receive 

recommendations. Enables human oversight 

and intervention. 

Explanation Module Provides justifications for the system's 

conclusions and explains the 

reasoning process. 

Offers transparency by detailing why a specific 

activity was flagged as a threat, tracing the 

sequence of rules and facts that led to the 

detection. Aids in forensic analysis and trust-

building. 

Knowledge Acquisition and Representation Techniques 

Knowledge acquisition is the process of gathering and formalizing domain-specific knowledge, typically from human experts 

through interviews, document analysis, or data mining techniques. Once acquired, this knowledge must be represented in a formal 
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notation that the system can process and utilize.9 Common representation techniques include: 

● Rule-based notation (IF-THEN rules): This is the most prevalent form, representing knowledge as conditional statements 

(e.g., "IF a system receives more than X connection requests within Y seconds from a single IP address THEN flag as DDoS 

attack") [68]. 

● Ontologies: These are formal representations that define concepts, categories, and the relationships between them within a 

specific domain [69]. In cybersecurity, ontologies can define relationships between threats, vulnerabilities, defenses, and assets, 

aiding in the classification of detected threats, cross-referencing with past attacks, and suggesting appropriate countermeasures. 

● Frame-based notation: This technique uses structured representations of concepts, similar to object-oriented programming 

classes, with "slots" for attributes and their associated values. 

● Semantic Networks: These are graphical representations of knowledge, using nodes to represent concepts and links to 

represent relationships between them. 

A significant challenge in the development of traditional RBES was the "knowledge acquisition bottleneck" This refers to the 

inherent difficulty and labor-intensiveness of manually acquiring and formalizing domain-specific knowledge from human experts. 

This process is complex, time-consuming, and expensive, particularly as the problem domain grows in complexity. This limitation 

was a primary factor driving the shift away from purely rule-based systems towards machine learning, which offered the promise of 

learning patterns directly from data.17 However, the current evolution towards hybrid AI reintroduces the value of structured 

knowledge. In this new paradigm, machine learning can be leveraged to automate parts of the knowledge acquisition process, for 

instance, by automatically learning rules and ontologies from data. Alternatively, pre-existing human knowledge can be seamlessly 

integrated to guide and enhance the learning processes of machine learning models. This cyclical pattern in AI development, where 

past challenges are revisited with new computational tools, suggests a mature understanding that neither purely manual knowledge 

engineering nor purely data-driven learning is sufficient in isolation for complex, dynamic domains [70]. 

Types of Rules and Reasoning Mechanisms 

Rules within RBES can be categorized by their functional purpose: 

● Deductive Rules: These are used for logical deductions, where if a condition is true, a specific conclusion must logically 

follow (e.g., "If a file matches a known malware signature, then it is malicious") [71]. 

● Reactive Rules: These rules are designed for event-driven actions, triggering a specific response when a certain event occurs 

(e.g., "When network traffic from a single source exceeds 1000 packets per second, trigger an alert"). 

● Production Rules: A general category of rules used for decision-making and problem-solving, typically in the "IF-THEN" 

format, where specific conditions lead to corresponding actions. 

Inference engines, the core reasoning component, employ different mechanisms to apply these rules and derive conclusions: 

● Forward Chaining: This data-driven approach starts with a set of available facts or input data and applies rules to deduce new 

information or reach a conclusion. For example, if a system detects an unusual spending pattern, forward chaining would apply 

rules to determine if this pattern indicates fraudulent activity [71]. 

● Backward Chaining: This goal-driven approach starts with a goal or hypothesis and works backward to determine the facts 

or evidence required to prove or disprove it. For instance, to confirm a specific type of cyberattack, backward chaining would 

seek evidence that matches the attack's known characteristics. 

● Hybrid Inference Engines: These advanced engines combine the strengths of both forward and backward chaining, often 

employed in complex applications that necessitate multiple reasoning strategies. This approach allows for both data-driven 

discovery and goal-driven verification. 

The existence of "hybrid inference engines" even within traditional RBES, which combine forward and backward chaining, signifies 

an early, implicit recognition that a single, rigid reasoning approach is often insufficient for complex problem-solving. This internal 

hybridization within the symbolic AI paradigm conceptually paved the way for the broader integration of symbolic and sub-symbolic 

AI. It suggests that the desire for flexible, multi-faceted reasoning and integrated, robust intelligence is not a new development but 

a persistent theme in AI research, continuously adapting its form as new computational paradigms emerge. This historical 

progression illustrates a foundational understanding that complex problems benefit from diverse reasoning strategies [73]. 

Cybersecurity Threat Landscape 

 

Common Cyber Threats and Their Characteristics 
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The contemporary cybersecurity landscape is characterized by a diverse and rapidly evolving array of threats. Understanding these 

threats is fundamental to designing effective detection systems. Common categories of cyber threats include [65]: 

● Malware: Abbreviation for "malicious software," this broad category includes viruses, worms, trojans, spyware, and 

ransomware. Malware is designed to infiltrate systems, compromise confidentiality, integrity, or availability of data, and can 

cause widespread damage and disruption. Spyware, specifically, aims to violate privacy by tracking personal activities or 

facilitating financial fraud. 

● Ransomware: A specific type of malware that encrypts a user's or organization's systems or data, denying access until a 

ransom (often in cryptocurrency) is paid for a decryption key. Ransomware is difficult to detect before it's too late, and its 

techniques constantly evolve. Human-operated ransomware, where attackers gain access to an entire network, is a growing 

concern.2 

● Distributed Denial of Service (DDoS) Attacks: These attacks aim to make an online service unavailable by overwhelming it 

with excessive traffic from multiple compromised systems (botnets), causing website response times to slow down or 

preventing access entirely. DDoS attacks are often used as a distraction for other forms of fraud or cyber intrusion. 

● Phishing and Social Engineering: Phishing involves sending fraudulent emails or messages pretending to come from a trusted 

source to trick individuals into revealing sensitive information or downloading malicious code. Social engineering 

encompasses broader psychological manipulation tactics, including baiting, pretexting, vishing (voice phishing), and smishing 

(SMS phishing), to gain unauthorized access or information. These attacks are becoming more sophisticated and personalized, 

often leveraging generative AI. 

● Insider Threat: Not all threats originate externally. Insider threats involve trusted individuals with authorized access who 

inadvertently or maliciously harm an organization by compromising data or systems. 

● Identity-Based Attacks: These attacks involve compromising user identities, where cyberattackers steal or guess credentials 

to gain unauthorized access to systems and data. Credential stuffing and brute-force attacks fall into this category. 

● Supply Chain Attacks: Attackers target an organization by tampering with software or hardware supplied by a third-party 

vendor, introducing malicious code or vulnerabilities into the supply chain.2 

● Code Injection: Exploiting vulnerabilities in how source code handles external data, cybercriminals inject malicious code into 

an application, such as SQL injection or cross-site scripting. 

The increasing complexity of these threats, coupled with the rapid adoption of new technologies and the widening cyber skills gap, 

contributes to a more opaque and unpredictable risk landscape. Generative AI, in particular, is noted as a catalyst for cybercrime, 

enabling more sophisticated and scalable attacks, lowering the cost of phishing, and streamlining the process from vulnerability 

exploitation to malware deployment. 

 

Traditional Threat Detection Methods 

Cybersecurity threat detection systems employ various methods to identify and mitigate malicious activities. These methods often 

form the foundation upon which more advanced AI-driven solutions are built [66]: 

● Signature-based Detection: This method relies on a database of known indicators of compromise (IOCs), such as unique file 

hashes, IP addresses, or specific patterns in network traffic or software. It is fast and reliable for detecting 

known threats that match predefined signatures (e.g., antivirus software detecting known malware). However, its primary 

limitation is its ineffectiveness against novel, zero-day, or polymorphic attacks that do not have a pre-existing signature.1 

● Anomaly-based Detection: This approach flags deviations from expected or "normal" patterns in network traffic, system 

performance, or user activity. By establishing a baseline of normal behavior, any significant departure from this norm can 

indicate a potential threat. This method is particularly effective for spotting stealthy, novel, or zero-day threats that signature-

based systems would miss. 

● Behavior-based Detection: Similar to anomaly detection, this method monitors typical user or system behavior over time to 

detect suspicious shifts. It focuses on actions and sequences of events rather than static patterns. Examples include unusual 

access to sensitive data, lateral movement across systems, or anomalous login times. This approach is valuable for identifying 

insider threats or sophisticated attacks that mimic legitimate activity. 

● Intelligence-driven Detection: This method integrates external threat intelligence feeds—data streams highlighting current 

and potential cyberattacks, tactics, techniques, and procedures (TTPs)—to identify emerging threats earlier. It allows security 

teams to take a more proactive approach by leveraging up-to-date information on cybercriminal behaviors and trends 

Most modern cybersecurity platforms layer these approaches to improve overall visibility and reduce false positives. This multi-
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layered strategy acknowledges that no single detection method is sufficient against the full spectrum of modern cyber threats. 

Table 2: Comparison of Traditional Cybersecurity Threat Detection Methods 

Method Principle Strengths Weaknesses Role in 

Cybersecurity 

Signature-based Matches known 

indicators of 

compromise 

(IOCs) against a 

database of 

predefined 

patterns. 

Fast and reliable 

for known threats; 

low false positives 

for exact matches. 

Ineffective against 

novel, zero-day, or 

polymorphic 

attacks; requires 

constant updates. 

Foundational for 

antivirus, 

firewalls, and 

basic IDS; 

identifies 

common, well-

documented 

threats. 

Anomaly-based Flags deviations 

from established 

baselines of 

normal network, 

system, or user 

behavior. 

Effective against 

novel and zero-day 

threats; can detect 

previously unseen 

attacks. 

High potential for 

false positives if 

baselines are not 

accurately 

established or 

environment 

changes rapidly. 

Detects unusual 

activities that may 

indicate a threat; 

complements 

signature-based 

methods. 

Behavior-based Monitors typical 

user/system 

actions over time 

to identify 

suspicious shifts or 

sequences of 

activity. 

Good for detecting 

insider threats, 

sophisticated 

attacks, and lateral 

movement; 

focuses on 

malicious intent. 

Requires extensive 

data collection and 

analysis to 

establish accurate 

behavioral 

profiles; can be 

resource-

intensive. 

Identifies 

malicious intent or 

compromised 

accounts by 

analyzing activity 

patterns; used in 

UEBA. 

Intelligence-

driven 

Integrates external 

threat intelligence 

(TTPs, IoCs) to 

identify emerging 

threats. 

Proactive defense 

against advanced 

attacks; leverages 

collective 

knowledge of 

cybercriminal 

activities. 

Relies on timely 

and accurate 

external feeds; 

may not cover 

highly targeted or 

unique attacks. 

Informs threat 

hunting, risk 

assessment, and 

strategic defense 

planning; 

enhances early 

detection. 

 

Rule-Based Expert Systems in Cybersecurity: Applications and Limitations 

Historical Applications and Performance 

Historically, Rule-Based Expert Systems (RBES) played a foundational role in cybersecurity, particularly in the development of 

early intrusion detection systems (IDS) and antivirus software. Early IDS, such as the Intrusion Detection Expert System (IDES), 

operated by comparing current user behaviors against historical profiles and applying expert-defined rules to identify deviations 

indicative of suspicious activity. These systems aimed to automate intrusion detection and even detect zero-day attacks, which 

previously required extensive human analysis.  Similarly, antivirus software of the era relied heavily on signature-based detection, 
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where a database of known malware signatures was matched against executable files or network traffic to identify threats [74]. 

While these systems were effective in their time, particularly against known and well-defined threats, their performance was 

inherently limited by their static nature. For instance, a rule-based antivirus could only detect a virus if its signature was already 

present in its database. Rule-based systems for malware detection, such as those using YARA rules, have shown effectiveness in 

identifying a wide range of malware families and variants through pattern matching. Recent efforts to automate YARA rule 

generation, leveraging Large Language Models (LLMs), have demonstrated promising results, with one system generating 763 rules 

(452 YARA and 311 Semgrep) achieving a precision of 85.2% and a recall of 91.8% in identifying malicious packages, 

outperforming state-of-the-art tools. This indicates that even in modern contexts, rule-based approaches, especially when augmented 

by advanced AI, can still contribute to cybersecurity [75]. 

Challenges: Adaptability, Scalability, and Maintenance in Evolving Threat Landscapes 

Despite their historical significance and foundational contributions, purely rule-based expert systems face significant challenges that 

limit their effectiveness in the dynamic modern cybersecurity landscape [76]: 

● Lack of Adaptability to Evolving Threats: The primary limitation of RBES is their reliance on predefined, static rules.10 

Cybercriminals constantly modify their attack patterns, creating novel or polymorphic variants that do not match existing 

signatures or rules.  This inflexibility makes RBES ineffective against zero-day exploits and rapidly evolving threats. The static 

nature of these systems means they cannot learn from new data or adapt to unforeseen scenarios without manual intervention. 

● Knowledge Acquisition Bottleneck: As discussed previously, the process of acquiring and formalizing domain-specific 

knowledge into explicit rules is labor-intensive, time-consuming, and expensive. This "bottleneck" becomes increasingly 

severe as the complexity and volume of cyber threats grow, making it impractical to manually encode rules for every new 

threat or variant. 

● Scalability Issues: As the number of rules and the volume of data to be processed increase, RBES can become cumbersome 

and difficult to manage. The computational overhead of matching and executing a vast number of rules can degrade system 

performance, making real-time threat detection challenging in large-scale networks. 

● Rule Conflict Resolution: In large and complex rule bases, inconsistencies or conflicts between rules can arise, leading to 

ambiguous or incorrect decisions. Resolving these conflicts requires significant manual effort and can be challenging to manage 

effectively.9 

● Maintenance Burden: Maintaining and updating rule bases to ensure their accuracy and relevance in a constantly changing 

threat environment requires substantial manual involvement and significant financial resources. This ongoing effort makes 

RBES less cost-effective and efficient compared to systems that can learn and adapt autonomously. 

These limitations underscore why traditional rule-based systems, while foundational, are no longer sufficient as standalone solutions 

for comprehensive cybersecurity threat detection. They highlight the imperative for more adaptive and intelligent approaches that 

can overcome these inherent rigidities. 

Table 3: Advantages and Disadvantages of Rule-Based Expert Systems in Cybersecurity 

 

Aspect Advantages Disadvantages 

Interpretability/ 

Transparency 

Highly transparent; decision-

making process is explicit 

and human-understandable 

("if-then" logic).7 Facilitates 

debugging and trust. 

Limited flexibility; 

incapable of 

autonomous learning or 

adapting to new 

situations without 

manual rule 

modification.13 

Knowledge 

Handling 

Can combine and preserve 

the knowledge of human 

experts.7 Can operate with 

uncertain or incomplete 

Knowledge 

Acquisition 

Bottleneck: Difficult 

and time-consuming to 
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knowledge.8 acquire and formalize 

domain knowledge into 

rules.55 

Adaptability to 

Threats 

Effective for detecting 

known threats with 

predefined patterns.10 

Poor Adaptability to 

Novel/Evolving 

Threats: Struggles with 

zero-day attacks, 

polymorphic malware, 

and rapidly changing 

attack patterns.10 

Scalability & 

Maintenance 

Modularity allows for easier 

extension of rules without 

affecting existing ones.12 

Scalability Issues: 
Becomes cumbersome 

and difficult to manage 

as the number of rules 

and data volume 

increase.11 

High Maintenance 

Burden: Requires 

substantial manual 

effort and financial 

resources to update 

rules.10 

Precision & 

Accuracy 

Can provide high precision 

for well-defined problems 

with clear rules.15 

Prone to making 

incorrect assumptions if 

rules are not 

immaculately defined.13 

May lead to 

inaccuracies with 

uncertain or ambiguous 

information.15 

 

Hybrid AI and Neuro-Symbolic Approaches for Enhanced Threat Detection 

The limitations of both purely symbolic and purely sub-symbolic AI paradigms have spurred the development of hybrid AI, 

particularly neuro-symbolic AI, as a promising solution for advanced cybersecurity threat detection. These approaches aim to 

combine the strengths of logical reasoning with data-driven learning to create more robust, explainable, and adaptable systems.2 

Integration Strategies and Architectural Patterns 

Hybrid AI models employ various strategies to combine machine learning with domain knowledge, leveraging expert information 

at different stages of the AI pipeline. Henry Kautz's taxonomy provides a useful framework for categorizing these neuro-symbolic 

architectures [77]: 

● Symbolic Neural Symbolic: This approach is common in large language models (LLMs) used in natural language processing, 

where words or subword tokens serve as direct input and output for neural networks. 

● Symbolic[Neural]: Symbolic techniques invoke neural techniques. A prominent example is AlphaGo, where Monte Carlo tree 

search (symbolic) calls upon neural networks to evaluate game positions. In cybersecurity, this could involve symbolic rules 

triggering ML models for deeper analysis of suspicious events. 

● Neural | Symbolic: A neural architecture interprets perceptual data, converting it into symbols and relationships that are then 

processed symbolically. For instance, a neural network might recognize objects in an image (e.g., a malicious file icon) and 

then apply logical rules to understand relationships between those objects and system behaviors. 

● Neural: Symbolic → Neural: Symbolic reasoning generates or labels training data, which is subsequently learned by a deep 

learning model. This approach can address the data scarcity problem often faced by ML models, especially for rare cyberattack 

types. 

● Neural_Symbolic_: A neural network is directly generated from symbolic rules. Examples include Neural Theorem Provers 

and Logic Tensor Networks, which encode logical formulas as differentiable functions, allowing symbolic knowledge to be 

integrated with gradient-based learning. 

● Neural: A neural model directly calls a symbolic reasoning engine to perform an action or evaluate a state. This could be seen 
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in systems where a neural network detects an anomaly, then calls a rule-based engine to determine the appropriate response 

based on compliance or safety protocols. 

Beyond Kautz's taxonomy, other integration strategies include: 

● Pre-processing or Feature Engineering with Domain Knowledge: Domain expertise is used to design or select relevant 

features, transform raw data, or filter noise, improving model input quality and learning efficiency. 

● Incorporating Domain Knowledge as Constraints During Model Training: Rules, physical laws, or logical constraints are 

embedded directly into the learning process (e.g., via constrained optimization or knowledge-based loss functions) to guide 

model parameters and ensure predictions respect essential domain principles. 

● Post-processing ML Outputs with Rule-Based Corrections: After an ML model generates predictions, domain knowledge 

can be applied through rule-based systems to validate, adjust, or correct results, enhancing reliability and preventing outputs 

that violate domain-specific rules. This is exemplified by hybrid fraud detection systems where ML identifies unusual 

spending, and symbolic rules flag potentially fraudulent transactions based on predefined compliance standards. 

 

These architectural patterns demonstrate the diverse ways in which hybrid AI systems can be designed to leverage the complementary 

strengths of symbolic and sub-symbolic approaches, moving towards more comprehensive and intelligent solutions. 

Benefits of Hybridization:  

Explainability, Robustness, Data Efficiency, and Generalization 

The integration of symbolic and sub-symbolic AI in hybrid systems offers several significant benefits, directly addressing the 

limitations of their standalone counterparts [78]: 

● Enhanced Explainability and Transparency: Hybrid models provide clearer explanations for their decisions by linking 

outcomes to known rules, concepts, or expert reasoning. This addresses the "black box" problem of deep learning, increasing 

user trust and facilitating regulatory compliance and auditing.  For example, a hybrid system can explain a loan denial by citing 

a specific rule violation (e.g., "debt-to-income ratio violates Rule 12.4"). 

● Improved Accuracy and Robustness: Incorporating domain knowledge guides model learning and inference, reducing errors 

caused by noisy or insufficient data. This results in more accurate and stable predictions across varying conditions, making 

systems more resilient to errors and unexpected inputs. 

● Faster Learning with Less Data (Data Efficiency): Domain knowledge acts as prior information, allowing models to learn 

meaningful patterns more quickly and effectively from limited datasets, thus reducing data dependency. This is particularly 

valuable in cybersecurity where labeled data for novel threats might be scarce. Neuro-symbolic models can achieve high 

accuracy with a fraction of the data required by pure neural networks. 

● Better Generalization in Real-World Scenarios: By combining data-driven learning with explicit rules, hybrid models can 

generalize better to unseen or out-of-domain scenarios. Symbolic components can enforce logical constraints, ensuring that 

predictions align with known principles even when data is sparse or unusual. 

● Handling Uncertainty and Ambiguity: Hybrid systems can effectively handle both unstructured data (via neural networks) 

and complex reasoning tasks (via symbolic logic), offering improved decision-making in ambiguous or uncertain situations.22 

Probabilistic methods can be incorporated alongside traditional logic to make informed decisions with incomplete or noisy 

data. 

● Adaptability with Integrity: Neural layers allow the system to learn and evolve from new data, while symbolic layers ensure 

that core ethical, legal, and safety standards remain intact. This creates systems that can adapt without compromising 

foundational principles. 

These benefits highlight the potential of hybrid AI to overcome the inherent weaknesses of monolithic AI approaches, paving the 

way for more intelligent, reliable, and context-aware cybersecurity systems. 

Empirical Studies and Real-World Applications 

Hybrid AI systems are increasingly being deployed across various industries, demonstrating their practical potential in complex 

decision-making tasks, including those relevant to cybersecurity. 

● Fraud Detection in Finance: Financial institutions utilize hybrid AI systems to combine machine learning's ability to identify 

unusual spending patterns with predefined symbolic AI rules for flagging potentially fraudulent transactions. This dual-model 



International Journal of Academic Engineering Research (IJAER) 

ISSN: 2643-9085 

Vol. 9 Issue 8 August - 2025, Pages: 44-62 

www.ijeais.org/ijaer 

54 

approach helps prevent fraud and reduces false positives, allowing human experts to follow up on questionable transactions 

with investigations. Large banks use AI-powered behavior analytics to monitor login patterns and transaction anomalies, 

flagging suspicious activity for immediate review. 

● Phishing Campaigns and Email Security: Healthcare providers have implemented AI-driven email filtering tools that scan 

message context, tone, and metadata, not just keywords or known blacklists. These systems have successfully blocked spear 

phishing emails impersonating executives, preventing credential theft and potential ransomware deployment. AI models 

analyze email metadata, content, and attachment behavior, leveraging natural language processing (NLP) to evaluate the tone, 

structure, and intent of messages, identifying subtle social engineering tactics.75 

● Malware Detection: While traditional rule-based systems (like YARA) are effective for known malware, hybrid approaches 

are emerging. Research on RuleLLM, which leverages Large Language Models (LLMs) to automate YARA and Semgrep rule 

generation, has shown promising empirical results. RuleLLM generated 763 rules with a precision of 85.2% and a recall of 

91.8% in identifying malicious packages, significantly outperforming baseline tools. This demonstrates how ML can enhance 

the traditional rule-based approach. Dynamic deep learning methods combined with heuristic approaches have also shown 

improved performance in classifying and detecting modern malware families. 

● Intrusion Detection Systems (IDS): AI-driven IDS improve network security by monitoring traffic patterns and detecting 

anomalies that signal intrusions. Machine learning models distinguish between normal and malicious network behaviors, 

identifying threats like DDoS attacks and lateral movement. Hybrid IDS architectures that adaptively apply interpretable 

regulations, combining misuse and anomaly-based detection, have been suggested to provide a more understandable illustration 

of classification models. Empirical studies on ML-based IDS using datasets like UNSW-NB15 have evaluated performance 

metrics such as accuracy, precision, recall, and F1-score, with models like XGBoost and CatBoost achieving high accuracy 

(87%) and interpretability. 

● IoT Threat Detection: Global manufacturers have deployed AI-based anomaly detection on their production networks to learn 

normal device communication patterns and flag abnormal activity, such as unexpected firmware updates or lateral movement 

attempts. This helps avoid costly downtime and equipment damage in smart factories and industrial control systems. 

● Incident Response and Security Operations Center (SOC) Automation: AI helps SOCs filter out false positives and 

prioritize real threats. AI-driven Security Orchestration, Automation, and Response (SOAR) platforms automatically correlate 

logs, enrich alerts with threat intelligence, and trigger incident response workflows without human intervention.  One enterprise 

SOC reported a 70% reduction in average response time, freeing analysts to focus on higher-level threats. 

● User Behavior Analytics (UBA): AI is used to establish behavioral baselines for individual users and detect deviations that 

could indicate insider threats or compromised accounts, such as unusual login times or data access patterns. 

● Autonomous Systems (e.g., Self-Driving Cars): While not directly cybersecurity, this domain illustrates hybrid AI's 

capability. Self-driving cars combine symbolic systems for safe driving rules with machine learning for object detection 

(pedestrians, vehicles). This highlights the integration of learned perception with explicit safety constraints. 

● Medical Diagnosis: Although a different domain, neuro-symbolic AI has shown promise in medical diagnosis, where Logical 

Neural Networks (LNNs) integrate domain-specific knowledge through logical rules with learnable weights. Studies have 

demonstrated enhanced diagnostic accuracy and explainable diagnostic pathways, bridging the gap between accuracy and 

interpretability. This serves as a strong parallel for the potential of hybrid AI in cybersecurity, where both accuracy and 

explainability are paramount. 

These empirical results and real-world applications underscore the growing maturity and effectiveness of hybrid AI approaches in 

addressing complex, high-stakes problems, providing a strong foundation for their continued development and deployment in 

cybersecurity threat detection. 

Table 4: Key Hybrid AI Architectures and Integration Strategies for Cybersecurity 

Architecture/Strategy Description Example/Mechanism Benefits for Cybersecurity 

Symbolic[Neural] Symbolic techniques 

invoke neural networks 

for specific sub-tasks. 

Symbolic rules trigger ML 

models for deeper analysis of 

suspicious network flows or 

unusual user behavior. 

Combines logical control with 

powerful pattern recognition; 

allows targeted application of 

ML. 
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**Neural Symbolic** Neural networks interpret raw 

data into symbolic 

representations, which are 

then reasoned about 

symbolically. 

A neural network identifies 

suspicious patterns in system 

logs (e.g., unusual API calls), 

which are then translated into 

symbols for a rule-based 

engine to classify and respond. 

Neural: Symbolic → 

Neural 

Symbolic reasoning 

generates or labels 

training data for neural 

networks. 

Security experts define rules 

for generating synthetic attack 

data to train ML models, 

especially for rare or zero-day 

threats. 

Addresses data scarcity issues 

for ML; ensures training data 

aligns with expert knowledge; 

improves learning efficiency. 

Neural_Symbolic_ Neural networks are 

directly structured or 

constrained by 

symbolic rules. 

Logic Tensor Networks 

encode logical formulas as 

differentiable functions within 

a neural network, allowing 

symbolic knowledge to guide 

learning. 

Integrates explicit knowledge 

directly into the learning 

architecture; ensures 

predictions adhere to security 

policies and logical 

constraints. 

Neural A neural model directly 

calls a symbolic 

reasoning engine for 

specific actions or 

evaluations. 

An ML-based anomaly 

detection system flags a high-

risk event, then calls a rule-

based engine to determine the 

appropriate automated 

response (e.g., isolate 

endpoint, block IP) based on 

predefined security playbooks. 

Combines ML's adaptive 

detection with symbolic AI's 

precise, explainable, and 

policy-driven response. 

Knowledge-Infused 

Feature Engineering 

Domain expertise is 

used to create or select 

relevant features for 

ML models. 

Security analysts define 

features (e.g., packet size 

ratios, frequency of specific 

port access) that are known 

indicators of certain attacks, 

improving ML model input 

quality. 

Improves learning efficiency 

and accuracy by providing 

meaningful input features; 

reduces reliance on raw, noisy 

data. 

Rule-Based Post-

processing of ML 

Outputs 

ML model predictions 

are validated or 

corrected by rule-based 

systems. 

An ML model predicts a 

transaction as fraudulent, but a 

rule-based system verifies if it 

violates a specific compliance 

rule before an alert is 

triggered, reducing false 

positives. 

Enhances reliability and 

compliance; provides a 

"guardrail" for ML 

predictions; adds a layer of 

explainability to final 

decisions. 

 

Methodology 
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This research adopts a systematic literature review methodology to investigate the evolution, architecture, and effectiveness of 

Rule-Based Expert Systems (RBES) in cybersecurity threat detection, as well as the emergence of hybrid AI paradigms. The 

approach is structured to ensure comprehensive coverage, critical analysis, and evidence-based insights. 

1. Scope Definition 

The study focuses on RBES within the domain of cybersecurity, emphasizing their historical development, core components, 

limitations, and the transition toward hybrid AI systems—particularly neuro-symbolic AI. The scope includes both theoretical 

foundations and practical applications. 

2. Information Retrieval 

A broad and targeted search was conducted across academic databases, industry publications, and reputable online sources. 

Keywords included: 

 "Rule-Based Expert Systems" 

 "Cybersecurity Threat Detection" 

 "Hybrid AI" 

 "Neuro-Symbolic AI" 

 "Machine Learning in Cybersecurity" 

 "Explainable AI" 

 "Knowledge-Based Systems" 

Sources were selected based on relevance, credibility, and recency to ensure a robust foundation for analysis. 

3. Data Extraction and Synthesis 

Key information was extracted from the selected literature, focusing on: 

 Definitions and conceptual frameworks 

 System architectures and components 

 Historical applications and performance metrics 

 Integration strategies for hybrid AI 

 Empirical results and case studies 

 Ethical considerations in AI deployment 

The extracted data were synthesized to identify recurring themes, trends, and causal relationships. 

4. Critical Analysis 

The synthesized findings were critically examined to uncover deeper insights. This included: 

 Evaluating the trade-offs between interpretability and adaptability in AI systems 

 Assessing how limitations in RBES influenced the rise of ML/DL 

 Exploring how hybrid AI reconciles symbolic and sub-symbolic approaches 

 Analyzing ethical implications such as transparency, bias, and accountability 

This analysis aimed to contextualize technological developments within broader cybersecurity challenges. 

5. Structure and Presentation 

The paper is organized into standard academic sections: Introduction, Objectives, Problem Statement, Literature Review, 

Methodology, Results, Discussion, Conclusion, and References. Tables and diagrams are used to present comparative data and 

architectural models clearly and accessibly. 
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6. Citation and Referencing 

All claims and data points are supported by rigorous citations, following a consistent referencing style. This ensures academic 

integrity and allows readers to trace sources for further exploration. 

 

Results 

The systematic literature review conducted in this study revealed a clear trajectory in the evolution of cybersecurity threat detection 

systems—from static, rule-based architectures to dynamic, learning-based models, and ultimately toward integrated hybrid AI 

solutions. 

Performance of Rule-Based Expert Systems (RBES) 

Historically, RBES played a pivotal role in early cybersecurity applications such as Intrusion Detection Systems (e.g., IDES) and 

antivirus software. These systems excelled at identifying known threats by matching predefined patterns and signatures. 

Their transparency and logical reasoning made them highly interpretable and trustworthy for human analysts. 

However, their effectiveness diminished significantly in the face of zero-day attacks, polymorphic malware, and rapidly evolving 

threat vectors. The static nature of RBES, coupled with the knowledge acquisition bottleneck—the labor-intensive process of 

manually updating rule sets—limited their scalability and adaptability. 

 

Advancements through Machine Learning and Deep Learning 

The transition to machine learning (ML) and deep learning (DL) marked a major leap in threat detection capabilities. ML models, 

using supervised and unsupervised learning, demonstrated the ability to detect anomalies and unknown threats by analyzing large 

volumes of data. DL techniques, particularly those employing neural networks, enhanced malware detection by examining behavioral 

patterns rather than relying solely on signatures. 

Empirical evidence supports these advancements: 

 Dynamic deep learning combined with heuristic methods outperformed static models in malware classification. 

 AI-driven cybersecurity tools are projected to save organizations over $150 billion annually by 2025. 

 MIT reports that AI-based systems detect cyberattacks 85% faster than traditional tools. 

Despite these gains, ML/DL models introduced the “black box” problem, where decision-making processes became opaque, 

hindering interpretability, trust, and forensic analysis. 

 

Emergence and Impact of Hybrid AI 

To address the limitations of both RBES and ML/DL, hybrid AI systems—particularly neuro-symbolic AI—have emerged. These 

systems integrate symbolic reasoning with neural learning, offering both adaptability and explainability. 

Key empirical findings include: 

 RuleLLM, a hybrid system using large language models to generate YARA and Semgrep rules, achieved 85.2% 

precision and 91.8% recall, outperforming state-of-the-art tools. 

 Hybrid Intrusion Detection Systems (IDS) using models like XGBoost and CatBoost on the UNSW-NB15 dataset reached 87% 

accuracy with low false positive and negative rates. 

 SOAR platforms powered by AI reduced incident response times by 70%, streamlining operations in Security Operations Centers 

(SOCs). 

 IoT threat detection systems using AI-based anomaly detection helped manufacturers avoid costly downtime by identifying 

abnormal device behavior. 

Cross-Domain Validation 

Hybrid AI’s effectiveness is further validated in other domains: 
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 In finance, hybrid models combine ML with compliance rules to detect fraud while minimizing false positives. 

 In healthcare, AI-driven email filters successfully blocked spear phishing attacks. 

 In medical diagnostics, Logical Neural Networks (LNNs) demonstrated improved accuracy and explainable decision pathways—

paralleling the needs of cybersecurity systems. 

These results affirm that hybrid AI systems not only enhance detection performance but also restore 

the interpretability and trust that are critical in cybersecurity environments. 

 

Table 5: Summary of Empirical Results and Case Studies in AI-driven Cybersecurity Threat Detection 

 

Application Area AI Approach Key Performance 

Indicators / Results 

Source 

Overall Threat 

Detection Efficiency 

AI-based systems 

(general) 

Identify cyberattacks 

85% faster than 

traditional tools. 

72 

Cost Savings AI-driven cybersecurity 

solutions (general) 

Expected to save 

organizations over $150 

billion annually by 2025. 

44 

Fraud Detection 

(Finance) 

Hybrid AI (ML + 

Symbolic Rules) 

Combines ML for 

anomaly detection with 

symbolic rules for 

compliance; prevents 

fraud and reduces false 

positives. 

25 

Phishing Detection 

(Healthcare) 

AI-driven email filtering 

(ML, NLP) 

Successfully blocked 

spear phishing emails 

impersonating 

executives; prevented 

credential theft and 

ransomware. 

73 

Malware Rule 

Generation 

RuleLLM (LLM-based 

for YARA/Semgrep 

rules) 

Generated 763 rules 

(452 YARA, 311 

Semgrep) with 85.2% 

precision and 91.8% 

recall; outperformed 

SOTA tools. 

71 

Malware Detection 

(Deep Learning) 

Dynamic deep learning 

+ heuristic approaches 

Outperformed static 

deep learning methods in 

classifying and detecting 

49 
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modern malware 

families. 

Intrusion Detection 

(ML-based IDS) 

XGBoost and CatBoost 

on UNSW-NB15 dataset 

Achieved 87% accuracy, 

0.07 false positive rate, 

0.12 false negative rate; 

highlighted key features 

for interpretability. 

64 

SOC Automation 

(SOAR platforms) 

AI-driven SOAR Led to a 70% reduction 

in average incident 

response time. 

54 

IoT Threat Detection 

(Manufacturing) 

AI-based anomaly 

detection 

Learned normal device 

communication patterns 

and flagged abnormal 

activity; avoided costly 

downtime. 

34 

Medical Diagnosis 

(Neuro-Symbolic AI) 

Logical Neural 

Networks (LNNs) 

Enhanced diagnostic 

accuracy and provided 

explainable diagnostic 

pathways; bridged 

accuracy and 

interpretability. 

71 

 

Discussion 

The findings of this research highlight a significant transformation in cybersecurity threat detection, reflecting the broader evolution 

of artificial intelligence from rule-based systems to hybrid neuro-symbolic architectures. This progression is not merely 

technological—it represents a strategic response to the increasing complexity, dynamism, and unpredictability of cyber threats. 

From Transparency to Adaptability: The RBES Legacy 

Rule-Based Expert Systems (RBES) laid the groundwork for intelligent cybersecurity by offering transparent, logic-driven 

decision-making. Their architecture, centered around human-defined rules and explanation modules, enabled clear traceability of 

decisions—an essential feature for trust, accountability, and forensic analysis. However, their static nature and reliance on manual 

rule updates rendered them ineffective against novel and polymorphic threats, leading to scalability and maintenance challenges. 

The knowledge acquisition bottleneck—the difficulty of extracting and formalizing expert knowledge—further limited RBES in 

rapidly evolving threat environments. These limitations underscored the need for systems capable of autonomous learning and 

adaptation. 

 

Rise of Machine Learning and the “Black Box” Dilemma 

Machine learning (ML) and deep learning (DL) addressed the adaptability gap by enabling systems to learn from data and detect 

previously unseen threats. These models excelled in pattern recognition and anomaly detection, significantly improving threat 

detection speed and accuracy. However, their opaque decision-making processes introduced the “black box” problem, where the 

rationale behind alerts became difficult to interpret. 



International Journal of Academic Engineering Research (IJAER) 

ISSN: 2643-9085 

Vol. 9 Issue 8 August - 2025, Pages: 44-62 

www.ijeais.org/ijaer 

60 

This lack of explainability poses serious risks in cybersecurity, where understanding the “why” behind a detection is crucial for 

incident response, regulatory compliance, and ethical accountability. Moreover, ML/DL models are vulnerable to adversarial 

manipulation, further complicating their deployment in high-stakes environments. 

 

Hybrid AI: Bridging Symbolic Logic and Neural Learning 

Hybrid AI, particularly neuro-symbolic systems, emerges as a compelling solution to reconcile the strengths and weaknesses of 

both RBES and ML/DL. By integrating symbolic reasoning with sub-symbolic learning, hybrid systems offer: 

 Explainability through rule-based logic 

 Adaptability via neural networks 

 Data efficiency by leveraging domain knowledge 

 Robustness against noisy or incomplete inputs 

This fusion mirrors human cognition, combining intuitive pattern recognition (System 1) with deliberate reasoning (System 2), as 

conceptualized by Kahneman. Hybrid AI systems can not only detect threats but also justify their decisions, enhancing trust and 

operational effectiveness. 

Ethical Dimensions and Responsible AI Deployment 

The ethical implications of AI in cybersecurity are profound. Transparency, fairness, and accountability are essential for 

responsible deployment. The black-box nature of ML models raises concerns about bias, discrimination, and liability—especially 

when decisions affect access, privacy, or legal outcomes. 

Hybrid AI offers a pathway to mitigate these risks by embedding human-readable logic and compliance rules into the decision-

making process. However, the integration of symbolic and neural components introduces new challenges in bias detection, rule 

validation, and system governance. Ongoing research and regulatory frameworks are needed to ensure that hybrid AI systems 

uphold ethical standards while maintaining technical excellence. 

Strategic Implications for Cyber Defense 

The shift toward hybrid AI reflects a maturing understanding of cybersecurity’s demands. No single paradigm—symbolic or sub-

symbolic—is sufficient in isolation. Instead, a synergistic approach is required, one that balances accuracy, adaptability, 

and explainability. 

This evolution is driven by the relentless arms race between cyber attackers and defenders. As threats become more sophisticated, 

AI systems must evolve to remain effective, trustworthy, and resilient. Hybrid AI represents not just a technological advancement 

but a strategic imperative for future-proof cybersecurity. 

 

Conclusion 

The evolution of cybersecurity threat detection reflects a broader transformation in artificial intelligence—from static, rule-

based systems to dynamic, learning-based models, and ultimately to hybrid AI architectures that integrate the strengths of both. Rule-

Based Expert Systems (RBES) provided a foundational framework for early cybersecurity solutions, offering transparency, logical 

reasoning, and human-understandable decision-making. However, their inability to adapt to novel threats, coupled with the 

knowledge acquisition bottleneck and scalability limitations, rendered them insufficient in the face of today’s rapidly evolving cyber 

landscape. 

The emergence of machine learning (ML) and deep learning (DL) addressed these limitations by enabling systems to autonomously 

learn from data and detect previously unseen threats. Yet, these approaches introduced new challenges—most notably, the “black 

box” problem, which undermines interpretability, trust, and accountability in high-stakes cybersecurity environments. 

Hybrid AI, particularly neuro-symbolic systems, offers a promising path forward. By combining the explainability and logical rigor 

of symbolic AI with the adaptability and pattern recognition capabilities of neural networks, hybrid systems deliver enhanced 

accuracy, robustness, and transparency. Empirical evidence from domains such as fraud detection, malware analysis, and intrusion 

detection demonstrates the practical effectiveness of these integrated approaches. 
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Looking ahead, the future of cybersecurity will increasingly depend on intelligent, adaptive, and explainable AI systems. Continued 

research is essential to refine hybrid architectures, improve knowledge representation techniques, and develop robust evaluation 

frameworks. Equally important is the ethical deployment of AI—ensuring fairness, mitigating bias, and establishing clear 

accountability mechanisms. 

In an era defined by a persistent arms race between cyber attackers and defenders, hybrid AI represents not just a technological 

advancement but a strategic necessity—one that empowers organizations to stay ahead of threats while maintaining the trust and 

confidence of stakeholders. 
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