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Abstract: SmartSort is proposed as an adaptive hybrid sorting algorithm that leverages both QuickSort and HeapSort techniques,
augmented by an Al-driven decision module to optimize performance under real-time constraints. This framework addresses the
challenges of unpredictable input distributions and stringent timing requirements in real-time systems by combining the speed of
QuickSort on average and the guaranteed worst-case behavior of HeapSort. SmartSort uses machine learning classifiers (e.g.
decision trees, XGBoost or neural networks) to analyze data patterns — such as size, range, and entropy — and adapt its strategy
(pivot selection or algorithm choice) on-the-fly[1][2]. We formally analyze SmartSort’s time complexity and space usage,
demonstrating average-case O(n log n) and worst-case O(n log n) behavior (due to the HeapSort fallback) while maintaining low
overhead. The algorithm’s best-, average-, and worst-case behaviors are discussed in detail, and we show that SmartSort can satisfy
bounded-latency and predictability requirements typical of real-time systems[3][4]. Recent literature on Al-driven algorithm
optimization and real-time scheduling is surveyed to support this design[5][6].
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Introduction

Sorting is a fundamental operation in computer systems, and its efficiency is critical in many applications — from database operations
to scheduling tasks in operating systems. In real-time computing, guaranteed timing behavior is paramount: algorithms must respect
strict worst-case execution time (WCET) constraints to meet deadlines[7]. Traditional sorts like QuickSort are very fast on average
but can degrade to O(n?) time for certain inputs, making them unpredictable for hard real-time uses[8][3]. HeapSort, by contrast, has
worst-case O(n log n) time but is often slower in practice and less cache-friendly[9][3]. These trade-offs motivate a hybrid approach:
use QuickSort’s speed on typical data, but fall back on HeapSort to cap worst-case cost. This idea is embodied by the introspective
sort (introsort), which begins with QuickSort and switches to HeapSort when recursion depth is high, thus ensuring O(n log n) worst-
case time[3]. SmartSort extends this concept by also incorporating Al-driven adaptivity.

The motivation for SmartSort is twofold. First, real-time systems increasingly encounter dynamic and unpredictable data streams,
such as sensor readings or network packets, where data characteristics may vary widely over time. An algorithm that can recognize
patterns (e.g. nearly-sorted, heavy-tails, uniform distribution) and adapt accordingly can maintain high efficiency. Second, modern
Al and machine learning (ML) techniques offer powerful tools to predict which algorithmic strategy will perform best on a given
input. Recent work shows that ML-guided approaches can significantly accelerate sorting: for instance, learned or neural-network-
based sorts have achieved substantial speedups on large datasets[2][5].

Thus, SmartSort is designed as an intelligent hybrid algorithm. It combines QuickSort and HeapSort, augmented with a machine-
learned classifier that examines features of the input array (size n, value range, entropy, or other statistics) to predict the most efficient
strategy. For example, if the classifier detects a nearly sorted array (which can trap naive QuickSort), SmartSort might choose a
robust pivot or switch early to HeapSort. Conversely, if data appears random, it proceeds with QuickSort to capitalize on its low
overhead. This adaptive behavior optimizes sorting efficiency based on actual data patterns, while the hybrid design ensures bounded
latency and predictability by avoiding QuickSort’s pathological cases[3][4].

In summary, this paper presents the SmartSort framework with a focus on theoretical analysis. We discuss its hybrid design, detail
how Al (e.g. classifiers) is integrated for adaptability, analyze its time/space complexity and case performance, and explain how it
meets real-time system requirements. We draw on recent research on Al-enhanced algorithms and real-time scheduling to support
SmartSort’s design choices[1][2].
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Problem Statement

Traditional sorting algorithms such as QuickSort and HeapSort are well-established for general-purpose computing; however, their
fixed behavior makes them suboptimal in real-time systems where timing constraints and unpredictable input distributions prevail.
QuickSort, while efficient on average, suffers from poor worst-case performance, whereas HeapSort provides consistent performance
but may be slower in practice.

Real-time systems demand guaranteed predictability, low latency, and adaptability to varying input data. Current sorting techniques
fail to dynamically adjust to the input characteristics or execution context, leading to inefficiencies or deadline violations in time-
sensitive applications.

Moreover, despite the growing integration of artificial intelligence into various algorithmic domains, Al-driven optimization of core
algorithms like sorting remains underexplored, particularly in the context of real-time constraints.

Methodology
The SmartSort algorithm operates as follows:

o Hybrid Quicksort-HeapSort design: SmartSort begins like a traditional QuickSort using a partition-and-recurse strategy. It
selects a pivot (e.g. using median-of-three selection, which is more robust than choosing first or last elements)[14]. After partitioning
the array, it recursively sorts each part. However, SmartSort tracks recursion depth or partition balance: if the recursion depth exceeds
a threshold (typically O(log n)) or if a partition is highly unbalanced, it switches to HeapSort for that (sub)array, ensuring that worst-
case time stays O(n log n)[3][4]. This introspective mechanism alone avoids QuickSort’s quadratic worst-case.

e Al-based adaptive strategy: Crucially, SmartSort includes a machine learning decision module to adapt to data patterns. At
runtime, before or during partitioning, it computes features of the subarray (for instance: length n, the range of values, entropy, or
indicators of sortedness). These features are fed into a pre-trained classifier (e.g. a decision tree, XGBoost model, or a small neural
network). The classifier predicts the best strategy: for example, it may suggest proceeding with QuickSort using a particular pivot
rule, or immediately switching to HeapSort. This approach is inspired by Adaptive Hybrid Sort’s use of an XGBoost model: in that
work, the model (trained on synthetic datasets) achieved 92.4% accuracy in selecting the optimal sort strategy based on features
{size, range, entropy}[1]. SmartSort’s model can be trained similarly on representative data distributions.

o Example: If the classifier detects that the subarray has very low entropy (e.g. nearly sorted or many repeated values), it might
predict that QuickSort performance would be poor (even with median-of-three). SmartSort would then choose HeapSort for this
segment. Conversely, if data appears random, the classifier would favor QuickSort for its lower overhead. Table-like decision logic
or a forest model can encode such decisions (for instance, “if N<20 use insertion sort, else if range > threshold use counting sort” is
one rule-based approach). In practice, SmartSort can combine simple static rules for trivial cases (small n, etc.) with ML for larger
n[15].

e Algorithm steps: The high-level SmartSort procedure can be outlined as:

o Base cases: If nis small (e.g. < 16), use Insertion Sort (fast for tiny arrays).

o Feature extraction: Compute key statistics of the array (size n, value range, entropy, etc.).
Decision: Use the ML model (or rule) to select strategy:

If strategy = QuickSort: pick pivot (e.g. median-of-three) and partition.

If strategy = HeapSort: ignore pivot, build a heap and perform HeapSort on this subarray.
Recursion: Apply SmartSort recursively on partitions (if QuickSort) or done (if HeapSort).

o Fallback: If using QuickSort, track recursion depth. If depth > 2-|logz(n)|, forcibly switch to HeapSort on the current segment
(as in introsort[3]).

o O e

This hybrid+Al approach ensures SmartSort adapts to data. For instance, genetic algorithms or neural networks might be used to
fine-tune pivot choice or sort direction; prior work found that genetic algorithms could optimize parameters for real-time sorting to
avoid worst-case patterns[16][6]. By leveraging Al, SmartSort can refine the simple introsort heuristic with data-driven insights.
Recent experiments in ML-driven sorting showed large performance gains: e.g., a neural network—based sort was 40% faster than
QuickSort on datasets of size >107[2]. SmartSort aims for similar gains by “learning” from data distributions.
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e Real-time integration: In a real-time system, SmartSort would typically be part of a task (e.g. reorganizing data for scheduling
or analytics). Its hybrid design and Al module must not violate timing constraints. Therefore:

e The ML inference is designed to be extremely fast: models can be quantized or simplified. For example, [15] reports an XGBoost
model with 0.2ms per decision and 1MB size, adding only ~0.1% overhead on large sorts[17]. SmartSort would use lightweight
models (or simple decision trees) so that classification adds negligible latency. Indeed, for very small subarrays (n<100) SmartSort
can skip the ML step entirely and rely on fixed rules to minimize overhead[17].

e Space usage is also controlled: the sort is in-place (aside from recursion stack) and the ML model has constant size. Thus,
SmartSort does not introduce unbounded memory demands beyond the input and model size.

e These properties (bounded decision time, fixed extra memory) allow SmartSort to maintain predictability. Combined with the
worst-case time guarantee (heap fallback), SmartSort can be certified for real-time use like any O(n log n) algorithm.

In summary, SmartSort’s methodology fuses classical algorithm engineering with modern Al. By outlining clear algorithmic steps
and ML integration, we create a sorting framework that learns from data distribution and still honors real-time requirements.

Literature Review

Hybrid sorting algorithms: The idea of combining sorting methods for better performance is well-established. The C++ Standard
Library’s std::sort uses introsort, which begins with QuickSort and switches to HeapSort if recursion depth grows too large[3].
Introsort thus achieves the fast average-case of QuickSort and the O(n log n) worst-case of HeapSort. Other hybrid sorts, like Timsort
(used in Python/Java), merge properties of merge sort and insertion sort. SmartSort builds on this lineage by explicitly combining
QuickSort and HeapSort: in effect, it is an introsort variant but with additional Al-driven strategy selection.

Machine learning and sorting: Recent research has explored using ML to optimize algorithm selection and even to learn new
algorithms. For example, AlphaDev (DeepMind) applied deep reinforcement learning to discover novel small sorting routines,
integrating them into LLVM’s C++ library to improve performance[5]. Other studies have used ML models to predict the best
sorting algorithm given data characteristics. Al-Shargabi and Morse (2023) proposed a Transformer-based classifier that selects
the optimal algorithm based on features of the data[10]. Adaptive Hybrid Sort (AHS) by Balasubramanian (2025) uses an XGBoost
classifier on features like size, value range, and entropy to choose among multiple sorts (Counting, Radix, QuickSort)[1][11]. These
efforts show that ML can significantly improve sorting by guiding strategy selection. SmartSort similarly uses ML for adaptivity,
but focuses on combining QuickSort and HeapSort within a real-time context.

Al in real-time systems: Real-time computing imposes strict timing constraints on algorithms[7][12]. Previous work (Puschner
1999) analyzed sorting algorithms under hard and soft real-time criteria, showing that algorithm choice depends on deadline
guarantees[12]. More recently, researchers have emphasized integrating Al into system design to meet real-time needs. For instance,
hybrid systems in embedded and edge computing increasingly leverage machine learning for dynamic task scheduling and data
processing. Hybrid sorting in real-time has not been deeply studied, but SmartSort aligns with calls in the literature for adaptive,
learning-driven sorting frameworks. A recent survey on sorting notes that future work should explore adaptive hybrid systems
leveraging machine learning for dynamic input adaptation[13]. SmartSort directly addresses this by bridging algorithmic theory with
Al in the real-time setting.

Theoretical Analysis
We now formally analyze SmartSort’s time and space complexity, and describe its behavior in the best, average, and worst cases.

Time complexity: SmartSort’s running time depends on which strategy is used on each recursive call. In the average case, when
data is random or well-behaved, QuickSort dominates. With median-of-three pivot selection, QuickSort achieves balanced partitions.
In particular, one can show the recurrence for QuickSort’s cost is T(n) = 7(3n/4) + T(n/4) + O(n) under the median-of-three
assumption[14]. This recurrence solves to 7(n) = O(n log n). Thus, when SmartSort uses QuickSort on large parts of the data, its
average complexity is O(n log n)[8][14]. More formally, the learning-guided switching does not worsen this: Balasubramanian
shows that an adaptive hybrid sort achieves O(n log n) average time via probabilistic strategy selection[11]. We similarly conclude
SmartSort’s average-case complexity remains ®(n log n). If the classifier frequently routes to HeapSort (for instance if QuickSort
would otherwise slow), HeapSort’s guaranteed ®(n log n)* time also applies.

In the best case, QuickSort could run in @(n) time if an extremely favorable pivot was always chosen (e.g. data with many duplicates
using a three-way partition leads to linear time[8]). HeapSort’s best-case is also O(n log n) (though equal-key cases can be O(n)).
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SmartSort can exploit best-case scenarios: for example, if the data is already sorted and median-of-three pivot splits evenly,
QuicksSort still takes @(n log n). However, SmartSort’s use of insertion sort on tiny segments Yields a small O(n?) contribution that
is O(n) overall. Thus, best-case is near O(n log n) in general, with the possibility of O(n) linear time if special data patterns are
detected and used.

The worst-case complexity is crucial. A pure QuickSort can be forced into @(n?) time by adversarial input (e.g. sorted data with
poor pivot choice)[8]. SmartSort avoids this by switching to HeapSort when QuickSort would degrade. Once SmartSort activates
HeapSort on a segment, that segment is sorted in @(n log n) worst-case time. Consequently, the overall worst-case running time of
SmartSort is @(n log n), the same bound as HeapSort[3]. In other words, SmartSort “systematically avoids the worst-case O(n?)
scenarios that plague traditional QuickSort”[4]. This makes SmartSort suitable for hard real-time use, because we can assert a
predictable O(n log n) upper bound on sorting time.

Recurrence and analysis: Consider SmartSort’s partition. If QuickSort is used, let T_q(n) be its cost. With good pivoting (median-
of-three), the worst recurrence is roughly 7' g(n) = T q(3n/4) + T q(n/4) + cn. Solving gives T_qg(n) = O(n log n)[14]. If at any
point QuickSort thresholds are exceeded, SmartSort switches to HeapSort, whose cost is T_h(n) = O(n log n) uniformly[9]. Thus, in
the worst path SmartSort’s recurrence is bounded by T(n) < T(n/2) + T(n/2) + O(n log n) (if it keeps switching), which is still O(n log

n).

Space complexity: SmartSort is in-place (aside from recursion and possibly a small model). QuickSort requires O(n) worst-case
auxiliary space (for the recursion stack in a naive implementation) but with median-of-three and tail-recursion elimination it uses
O(log n) on average[18]. HeapSort uses O(1) additional space (it transforms the array in-place). SmartSort may incur up to O(log n)
stack usage (like QuickSort), plus constant space for heap operations. The ML component (the classifier model) adds a fixed memory
overhead (e.g. a few kilobytes to a few megabytes). In practice, as [15] notes, the model can be as small as ~IMB with
quantization[17]. This space is a constant independent of n, so SmartSort’s asymptotic extra space remains O(n) total (the array
itself) and O(log n) auxiliary for recursion.

In summary, SmartSort achieves average-case O(n log n) and worst-case O(n log n) time, with space usage dominated by O(log n)
recursion plus constant ML overhead[11][9]. These are comparable to the best classic sorts (QuickSort’s average and HeapSort’s
worst), while SmartSort combines their strengths.

Discussion
SmartSort’s hybrid and adaptive design yields several notable behaviors and trade-offs:

¢ Adaptive performance: By integrating an ML classifier, SmartSort can adapt to changing data patterns. For large datasets, a
trained model can predict the optimal strategy almost instantly. As shown in AHS, ML inference can be extremely fast (~0.2 ms)
and accurate (>92%)[1][17]. Thus, SmartSort can reduce the number of costly mis-predictions compared to static heuristics. For
very small arrays, the ML step can be skipped in favor of simple static rules (as AHS does for n<100)[17]. Overall, this adaptivity
often leads to faster sorting in practice, consistent with experimental findings (e.g. neural-network-driven sorts achieving ~40%
speedups[2]).

e \Worst-case robustness: SmartSort provides a firm real-time guarantee via its HeapSort fallback. No matter the input,
SmartSort’s running time cannot exceed O(n log n). This predictability is essential for bounded-latency requirements. In fact,
benchmarking of similar adaptive sorts shows they “systematically avoid the worst-case O(n?) scenarios” of pure QuickSort[4].
SmartSort inherits this property, giving system designers confidence that deadlines will not be missed due to pathological inputs.

¢ Real-time constraints: Because SmartSort bounds its time and overhead, it meets hard real-time constraints. Key considerations
include:

e Bounded latency: The worst-case O(n log n) time provides a calculable upper bound on latency. Coupled with the known ML
decision time, total WCET can be estimated. Traditional WCET analysis tools can incorporate SmartSort as they would any sort
with O(n log n) guarantee.

e Determinism: SmartSort’s logic (pivot rules, thresholding, classifier output) is deterministic once the model is fixed. There are
no unbounded loops or data-dependent variances beyond the controlled branching, so timing variation is limited. As noted by
Puschner, predictability is crucial in real-time sorting contexts[7]. SmartSort satisfies this through algorithmic design.
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e Low overhead: The ML model used by SmartSort is small and optimized for inference. [15] reports that for large inputs (n>10°),
the ML overhead was <0.1% of total time[17]. This means SmartSort’s latency is essentially the same as a regular hybrid sort plus
negligible decision time. Therefore, SmartSort does not compromise the tight timing budgets typical of real-time tasks.

e Case analysis:

o Best-case: If the data distribution is extremely favorable (e.g. all elements equal), SmartSort may run as fast as ®(n) (QuickSort
with median-of-three can be linear in equal-key cases[8]). The decision model would likely identify this pattern and reinforce the
most efficient path.

e Average-case: For random or typical inputs, SmartSort behaves similarly to QuickSort with median-of-three, achieving ~n logn
operations. With high probability, the ML classifier will route these cases through QuickSort, matching classic performance.
Empirical studies show these hybrid schemes dominate bubble/insertion sorts on large n, with quicksort-like times[19].

e Worst-case: As discussed, even adversarial inputs (e.g. sorted or anti-QuickSort arrays) result in SmartSort switching to
HeapSort. HeapSort then sorts in O(n log n) time, avoiding the n2 blowup[4][3]. Thus the worst-case is always bounded. In fact,
SmartSort’s worst-case is comparable to introsort’s guarantee[3].

e Limitations and considerations: SmartSort requires training of the ML model on representative data distributions. If the
deployment data dramatically differ from the training set, classification accuracy may drop. To mitigate this, the model can be
updated with new data or confidence thresholds can revert to safe defaults. Additionally, SmartSort (like QuickSort) is not stable,
which is acceptable for many real-time tasks but should be noted if stability is required.

In practical real-time systems (e.g. embedded controllers, network packet processing), SmartSort’s combined speed and
predictability are valuable. For instance, task schedulers often need to sort jobs by priority or deadline[20]; using SmartSort ensures
fast scheduling decisions without risking deadline misses. The scalability of SmartSort also makes it attractive for high-performance
and big-data streams as edge Al continues to advance[21][22].

Conclusion

SmartSort is an intelligent sorting framework designed to meet the dual goals of efficiency and real-time reliability. By hybridizing
QuickSort and HeapSort, it merges QuickSort’s fast average-case with HeapSort’s guaranteed worst-case of O(n log n)[3][8].
Crucially, SmartSort introduces an Al-driven decision layer: a classifier that analyzes data patterns (such as size, range, entropy) to
adaptively choose the optimal strategy (pivot rule or algorithm)[1][10]. This adaptive behavior allows SmartSort to exploit favorable
cases and avoid pitfalls, resulting in consistently high throughput even as data characteristics evolve.

Our theoretical analysis shows that SmartSort maintains O(n log n) complexity in both average and worst cases, while using only
O(log n) auxiliary space (besides the input)[11][9]. The integration of the ML model adds only constant overhead, preserving
bounded latency; experimental results from similar approaches indicate decision overheads on the order of 0.2ms, negligible for
large sorts[17]. These properties ensure that SmartSort meets the predictability requirements of real-time systems: deadlines can be
guaranteed and execution time remains deterministic with respect to worst-case bounds[7][4].

In conclusion, SmartSort represents a promising advance in algorithm design, leveraging Al to optimize classical algorithms under
real-time constraints. It synthesizes ideas from recent works on learned and hybrid sorting[5][13], and provides a concrete method
for real-time data processing tasks. Future work could involve implementing SmartSort in embedded platforms, exploring other ML
models (e.g. reinforcement learning policies), and validating its performance on real-world real-time workloads such as streaming
analytics or control systems. As Al continues to transform computing, SmartSort exemplifies how machine learning can be
embedded within fundamental algorithms to meet evolving requirements.
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