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Abstract: SmartSort is proposed as an adaptive hybrid sorting algorithm that leverages both QuickSort and HeapSort techniques, 

augmented by an AI-driven decision module to optimize performance under real-time constraints. This framework addresses the 

challenges of unpredictable input distributions and stringent timing requirements in real-time systems by combining the speed of 

QuickSort on average and the guaranteed worst-case behavior of HeapSort. SmartSort uses machine learning classifiers (e.g. 

decision trees, XGBoost or neural networks) to analyze data patterns – such as size, range, and entropy – and adapt its strategy 

(pivot selection or algorithm choice) on-the-fly[1][2]. We formally analyze SmartSort’s time complexity and space usage, 

demonstrating average-case O(n log n) and worst-case O(n log n) behavior (due to the HeapSort fallback) while maintaining low 

overhead. The algorithm’s best-, average-, and worst-case behaviors are discussed in detail, and we show that SmartSort can satisfy 

bounded-latency and predictability requirements typical of real-time systems[3][4]. Recent literature on AI-driven algorithm 

optimization and real-time scheduling is surveyed to support this design[5][6]. 

Keywords : Adaptive Sorting Algorithm , Hybrid Sorting , QuickSort , HeapSort , Real-Time Systems , Algorithm Optimization , 

Predictability , Bounded Latency. 

 

Introduction 

Sorting is a fundamental operation in computer systems, and its efficiency is critical in many applications – from database operations 

to scheduling tasks in operating systems. In real-time computing, guaranteed timing behavior is paramount: algorithms must respect 

strict worst-case execution time (WCET) constraints to meet deadlines[7]. Traditional sorts like QuickSort are very fast on average 

but can degrade to O(n²) time for certain inputs, making them unpredictable for hard real-time uses[8][3]. HeapSort, by contrast, has 

worst-case O(n log n) time but is often slower in practice and less cache-friendly[9][3]. These trade-offs motivate a hybrid approach: 

use QuickSort’s speed on typical data, but fall back on HeapSort to cap worst-case cost. This idea is embodied by the introspective 

sort (introsort), which begins with QuickSort and switches to HeapSort when recursion depth is high, thus ensuring O(n log n) worst-

case time[3]. SmartSort extends this concept by also incorporating AI-driven adaptivity. 

The motivation for SmartSort is twofold. First, real-time systems increasingly encounter dynamic and unpredictable data streams, 

such as sensor readings or network packets, where data characteristics may vary widely over time. An algorithm that can recognize 

patterns (e.g. nearly-sorted, heavy-tails, uniform distribution) and adapt accordingly can maintain high efficiency. Second, modern 

AI and machine learning (ML) techniques offer powerful tools to predict which algorithmic strategy will perform best on a given 

input. Recent work shows that ML-guided approaches can significantly accelerate sorting: for instance, learned or neural-network-

based sorts have achieved substantial speedups on large datasets[2][5]. 

Thus, SmartSort is designed as an intelligent hybrid algorithm. It combines QuickSort and HeapSort, augmented with a machine-

learned classifier that examines features of the input array (size n, value range, entropy, or other statistics) to predict the most efficient 

strategy. For example, if the classifier detects a nearly sorted array (which can trap naive QuickSort), SmartSort might choose a 

robust pivot or switch early to HeapSort. Conversely, if data appears random, it proceeds with QuickSort to capitalize on its low 

overhead. This adaptive behavior optimizes sorting efficiency based on actual data patterns, while the hybrid design ensures bounded 

latency and predictability by avoiding QuickSort’s pathological cases[3][4]. 

In summary, this paper presents the SmartSort framework with a focus on theoretical analysis. We discuss its hybrid design, detail 

how AI (e.g. classifiers) is integrated for adaptability, analyze its time/space complexity and case performance, and explain how it 

meets real-time system requirements. We draw on recent research on AI-enhanced algorithms and real-time scheduling to support 

SmartSort’s design choices[1][2]. 
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Problem Statement 

Traditional sorting algorithms such as QuickSort and HeapSort are well-established for general-purpose computing; however, their 

fixed behavior makes them suboptimal in real-time systems where timing constraints and unpredictable input distributions prevail. 

QuickSort, while efficient on average, suffers from poor worst-case performance, whereas HeapSort provides consistent performance 

but may be slower in practice. 

Real-time systems demand guaranteed predictability, low latency, and adaptability to varying input data. Current sorting techniques 

fail to dynamically adjust to the input characteristics or execution context, leading to inefficiencies or deadline violations in time-

sensitive applications. 

Moreover, despite the growing integration of artificial intelligence into various algorithmic domains, AI-driven optimization of core 

algorithms like sorting remains underexplored, particularly in the context of real-time constraints. 

 

Methodology 

The SmartSort algorithm operates as follows: 

 Hybrid Quicksort-HeapSort design: SmartSort begins like a traditional QuickSort using a partition-and-recurse strategy. It 

selects a pivot (e.g. using median-of-three selection, which is more robust than choosing first or last elements)[14]. After partitioning 

the array, it recursively sorts each part. However, SmartSort tracks recursion depth or partition balance: if the recursion depth exceeds 

a threshold (typically O(log n)) or if a partition is highly unbalanced, it switches to HeapSort for that (sub)array, ensuring that worst-

case time stays O(n log n)[3][4]. This introspective mechanism alone avoids QuickSort’s quadratic worst-case. 

 AI-based adaptive strategy: Crucially, SmartSort includes a machine learning decision module to adapt to data patterns. At 

runtime, before or during partitioning, it computes features of the subarray (for instance: length n, the range of values, entropy, or 

indicators of sortedness). These features are fed into a pre-trained classifier (e.g. a decision tree, XGBoost model, or a small neural 

network). The classifier predicts the best strategy: for example, it may suggest proceeding with QuickSort using a particular pivot 

rule, or immediately switching to HeapSort. This approach is inspired by Adaptive Hybrid Sort’s use of an XGBoost model: in that 

work, the model (trained on synthetic datasets) achieved 92.4% accuracy in selecting the optimal sort strategy based on features 

{size, range, entropy}[1]. SmartSort’s model can be trained similarly on representative data distributions. 

o Example: If the classifier detects that the subarray has very low entropy (e.g. nearly sorted or many repeated values), it might 

predict that QuickSort performance would be poor (even with median-of-three). SmartSort would then choose HeapSort for this 

segment. Conversely, if data appears random, the classifier would favor QuickSort for its lower overhead. Table-like decision logic 

or a forest model can encode such decisions (for instance, “if n<20 use insertion sort, else if range > threshold use counting sort” is 

one rule-based approach). In practice, SmartSort can combine simple static rules for trivial cases (small n, etc.) with ML for larger 

n[15]. 

 Algorithm steps: The high-level SmartSort procedure can be outlined as: 

 Base cases: If n is small (e.g. < 16), use Insertion Sort (fast for tiny arrays). 

 Feature extraction: Compute key statistics of the array (size n, value range, entropy, etc.). 

 Decision: Use the ML model (or rule) to select strategy: 

o If strategy = QuickSort: pick pivot (e.g. median-of-three) and partition. 

o If strategy = HeapSort: ignore pivot, build a heap and perform HeapSort on this subarray. 

 Recursion: Apply SmartSort recursively on partitions (if QuickSort) or done (if HeapSort). 

 Fallback: If using QuickSort, track recursion depth. If depth > 2·⌊log₂(n)⌋, forcibly switch to HeapSort on the current segment 

(as in introsort[3]). 

This hybrid+AI approach ensures SmartSort adapts to data. For instance, genetic algorithms or neural networks might be used to 

fine-tune pivot choice or sort direction; prior work found that genetic algorithms could optimize parameters for real-time sorting to 

avoid worst-case patterns[16][6]. By leveraging AI, SmartSort can refine the simple introsort heuristic with data-driven insights. 

Recent experiments in ML-driven sorting showed large performance gains: e.g., a neural network–based sort was 40% faster than 

QuickSort on datasets of size >10⁷[2]. SmartSort aims for similar gains by “learning” from data distributions. 
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 Real-time integration: In a real-time system, SmartSort would typically be part of a task (e.g. reorganizing data for scheduling 

or analytics). Its hybrid design and AI module must not violate timing constraints. Therefore: 

 The ML inference is designed to be extremely fast: models can be quantized or simplified. For example, [15] reports an XGBoost 

model with 0.2ms per decision and 1MB size, adding only ~0.1% overhead on large sorts[17]. SmartSort would use lightweight 

models (or simple decision trees) so that classification adds negligible latency. Indeed, for very small subarrays (n≤100) SmartSort 

can skip the ML step entirely and rely on fixed rules to minimize overhead[17]. 

 Space usage is also controlled: the sort is in-place (aside from recursion stack) and the ML model has constant size. Thus, 

SmartSort does not introduce unbounded memory demands beyond the input and model size. 

 These properties (bounded decision time, fixed extra memory) allow SmartSort to maintain predictability. Combined with the 

worst-case time guarantee (heap fallback), SmartSort can be certified for real-time use like any O(n log n) algorithm. 

In summary, SmartSort’s methodology fuses classical algorithm engineering with modern AI. By outlining clear algorithmic steps 

and ML integration, we create a sorting framework that learns from data distribution and still honors real-time requirements. 

 

Literature Review  

Hybrid sorting algorithms: The idea of combining sorting methods for better performance is well-established. The C++ Standard 

Library’s std::sort uses introsort, which begins with QuickSort and switches to HeapSort if recursion depth grows too large[3]. 

Introsort thus achieves the fast average-case of QuickSort and the O(n log n) worst-case of HeapSort. Other hybrid sorts, like Timsort 

(used in Python/Java), merge properties of merge sort and insertion sort. SmartSort builds on this lineage by explicitly combining 

QuickSort and HeapSort: in effect, it is an introsort variant but with additional AI-driven strategy selection. 

Machine learning and sorting: Recent research has explored using ML to optimize algorithm selection and even to learn new 

algorithms. For example, AlphaDev (DeepMind) applied deep reinforcement learning to discover novel small sorting routines, 

integrating them into LLVM’s C++ library to improve performance[5]. Other studies have used ML models to predict the best 

sorting algorithm given data characteristics. Al-Shargabi and Morse (2023) proposed a Transformer-based classifier that selects 

the optimal algorithm based on features of the data[10]. Adaptive Hybrid Sort (AHS) by Balasubramanian (2025) uses an XGBoost 

classifier on features like size, value range, and entropy to choose among multiple sorts (Counting, Radix, QuickSort)[1][11]. These 

efforts show that ML can significantly improve sorting by guiding strategy selection. SmartSort similarly uses ML for adaptivity, 

but focuses on combining QuickSort and HeapSort within a real-time context. 

AI in real-time systems: Real-time computing imposes strict timing constraints on algorithms[7][12]. Previous work (Puschner 

1999) analyzed sorting algorithms under hard and soft real-time criteria, showing that algorithm choice depends on deadline 

guarantees[12]. More recently, researchers have emphasized integrating AI into system design to meet real-time needs. For instance, 

hybrid systems in embedded and edge computing increasingly leverage machine learning for dynamic task scheduling and data 

processing. Hybrid sorting in real-time has not been deeply studied, but SmartSort aligns with calls in the literature for adaptive, 

learning-driven sorting frameworks. A recent survey on sorting notes that future work should explore adaptive hybrid systems 

leveraging machine learning for dynamic input adaptation[13]. SmartSort directly addresses this by bridging algorithmic theory with 

AI in the real-time setting. 

 

Theoretical Analysis 

We now formally analyze SmartSort’s time and space complexity, and describe its behavior in the best, average, and worst cases. 

Time complexity: SmartSort’s running time depends on which strategy is used on each recursive call. In the average case, when 

data is random or well-behaved, QuickSort dominates. With median-of-three pivot selection, QuickSort achieves balanced partitions. 

In particular, one can show the recurrence for QuickSort’s cost is T(n) = T(3n/4) + T(n/4) + Θ(n) under the median-of-three 

assumption[14]. This recurrence solves to T(n) = Θ(n log n). Thus, when SmartSort uses QuickSort on large parts of the data, its 

average complexity is O(n log n)[8][14]. More formally, the learning-guided switching does not worsen this: Balasubramanian 

shows that an adaptive hybrid sort achieves O(n log n) average time via probabilistic strategy selection[11]. We similarly conclude 

SmartSort’s average-case complexity remains Θ(n log n). If the classifier frequently routes to HeapSort (for instance if QuickSort 

would otherwise slow), HeapSort’s guaranteed Θ(n log n)* time also applies. 

In the best case, QuickSort could run in Θ(n) time if an extremely favorable pivot was always chosen (e.g. data with many duplicates 

using a three-way partition leads to linear time[8]). HeapSort’s best-case is also O(n log n) (though equal-key cases can be O(n)). 

https://www.arxiv.org/pdf/2506.20677#:~:text=overhead,84.6
https://www.arxiv.org/pdf/2506.20677#:~:text=overhead,84.6
https://en.wikipedia.org/wiki/Introsort#:~:text=Introsort%20or%20introspective%20sort%20is,it%20is%20also%20a%20comparison
https://www.nature.com/articles/s41586-023-06004-9?error=cookies_not_supported&code=6276471b-8eeb-417b-bfda-5e2b91d5e2bc#:~:text=and%20computational%20approaches,domains%2C%20showcasing%20the%20generality%20of
https://www.researchgate.net/publication/371345943_Exploration_of_Machine_Learning_Techniques_for_Adaptive_Selection_of_Sorting_Algorithms_Based_on_Data_Characteristics#:~:text=In%20today%27s%20data,into%20the%20theoretical%20underpinnings%20and
https://www.arxiv.org/pdf/2506.20677#:~:text=H,CLASSIFIER%20PERFORMANCE%20METRICS
https://www.arxiv.org/pdf/2506.20677#:~:text=diverse%20data%20distributions,For%20large%20datasets%20%28n
https://en.wikipedia.org/wiki/Best,_worst_and_average_case#:~:text=In%20real,will%20always%20finish%20on%20time
https://link.springer.com/article/10.1023/A:1008055919262#:~:text=In%20hard%20real,the%20specified%20quality%20of%20service
https://link.springer.com/article/10.1023/A:1008055919262#:~:text=In%20hard%20real,the%20specified%20quality%20of%20service
https://sciety-labs.elifesciences.org/articles/by?article_doi=10.31224/4537#:~:text=efficiency%20divergence%2C%20with%20O,optimizing%20algorithm%20selection%20in%20data
https://www.arxiv.org/pdf/2506.20677#:~:text=its%20recursive%20partitioning%20approach,case%20performance
https://en.wikipedia.org/wiki/Quicksort#:~:text=algorithm%20takes%20Image%3A%20,2%7D%29%7D%20comparisons
https://www.arxiv.org/pdf/2506.20677#:~:text=its%20recursive%20partitioning%20approach,case%20performance
https://www.arxiv.org/pdf/2506.20677#:~:text=diverse%20data%20distributions,For%20large%20datasets%20%28n
https://en.wikipedia.org/wiki/Quicksort#:~:text=algorithm%20takes%20Image%3A%20,2%7D%29%7D%20comparisons


International Journal of Academic Information Systems Research (IJAISR) 

ISSN: 2643-9026 

Vol. 9 Issue 8 August - 2025, Pages: 80-85 

www.ijeais.org/ijaisr 

83 

SmartSort can exploit best-case scenarios: for example, if the data is already sorted and median-of-three pivot splits evenly, 

QuickSort still takes Θ(n log n). However, SmartSort’s use of insertion sort on tiny segments yields a small O(n²) contribution that 

is O(n) overall. Thus, best-case is near O(n log n) in general, with the possibility of O(n) linear time if special data patterns are 

detected and used. 

The worst-case complexity is crucial. A pure QuickSort can be forced into Θ(n²) time by adversarial input (e.g. sorted data with 

poor pivot choice)[8]. SmartSort avoids this by switching to HeapSort when QuickSort would degrade. Once SmartSort activates 

HeapSort on a segment, that segment is sorted in Θ(n log n) worst-case time. Consequently, the overall worst-case running time of 

SmartSort is Θ(n log n), the same bound as HeapSort[3]. In other words, SmartSort “systematically avoids the worst-case O(n²) 

scenarios that plague traditional QuickSort”[4]. This makes SmartSort suitable for hard real-time use, because we can assert a 

predictable O(n log n) upper bound on sorting time. 

Recurrence and analysis: Consider SmartSort’s partition. If QuickSort is used, let T_q(n) be its cost. With good pivoting (median-

of-three), the worst recurrence is roughly T_q(n) ≈ T_q(3n/4) + T_q(n/4) + c·n. Solving gives T_q(n) = O(n log n)[14]. If at any 

point QuickSort thresholds are exceeded, SmartSort switches to HeapSort, whose cost is T_h(n) = O(n log n) uniformly[9]. Thus, in 

the worst path SmartSort’s recurrence is bounded by T(n) ≤ T(n/2) + T(n/2) + O(n log n) (if it keeps switching), which is still O(n log 

n). 

Space complexity: SmartSort is in-place (aside from recursion and possibly a small model). QuickSort requires O(n) worst-case 

auxiliary space (for the recursion stack in a naive implementation) but with median-of-three and tail-recursion elimination it uses 

O(log n) on average[18]. HeapSort uses O(1) additional space (it transforms the array in-place). SmartSort may incur up to O(log n) 

stack usage (like QuickSort), plus constant space for heap operations. The ML component (the classifier model) adds a fixed memory 

overhead (e.g. a few kilobytes to a few megabytes). In practice, as [15] notes, the model can be as small as ~1MB with 

quantization[17]. This space is a constant independent of n, so SmartSort’s asymptotic extra space remains O(n) total (the array 

itself) and O(log n) auxiliary for recursion. 

In summary, SmartSort achieves average-case O(n log n) and worst-case O(n log n) time, with space usage dominated by O(log n) 

recursion plus constant ML overhead[11][9]. These are comparable to the best classic sorts (QuickSort’s average and HeapSort’s 

worst), while SmartSort combines their strengths. 

 

Discussion 

SmartSort’s hybrid and adaptive design yields several notable behaviors and trade-offs: 

 Adaptive performance: By integrating an ML classifier, SmartSort can adapt to changing data patterns. For large datasets, a 

trained model can predict the optimal strategy almost instantly. As shown in AHS, ML inference can be extremely fast (∼0.2 ms) 

and accurate (>92%)[1][17]. Thus, SmartSort can reduce the number of costly mis-predictions compared to static heuristics. For 

very small arrays, the ML step can be skipped in favor of simple static rules (as AHS does for n≤100)[17]. Overall, this adaptivity 

often leads to faster sorting in practice, consistent with experimental findings (e.g. neural-network-driven sorts achieving ~40% 

speedups[2]). 

 Worst-case robustness: SmartSort provides a firm real-time guarantee via its HeapSort fallback. No matter the input, 

SmartSort’s running time cannot exceed O(n log n). This predictability is essential for bounded-latency requirements. In fact, 

benchmarking of similar adaptive sorts shows they “systematically avoid the worst-case O(n²) scenarios” of pure QuickSort[4]. 

SmartSort inherits this property, giving system designers confidence that deadlines will not be missed due to pathological inputs. 

 Real-time constraints: Because SmartSort bounds its time and overhead, it meets hard real-time constraints. Key considerations 

include: 

 Bounded latency: The worst-case O(n log n) time provides a calculable upper bound on latency. Coupled with the known ML 

decision time, total WCET can be estimated. Traditional WCET analysis tools can incorporate SmartSort as they would any sort 

with O(n log n) guarantee. 

 Determinism: SmartSort’s logic (pivot rules, thresholding, classifier output) is deterministic once the model is fixed. There are 

no unbounded loops or data-dependent variances beyond the controlled branching, so timing variation is limited. As noted by 

Puschner, predictability is crucial in real-time sorting contexts[7]. SmartSort satisfies this through algorithmic design. 
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 Low overhead: The ML model used by SmartSort is small and optimized for inference. [15] reports that for large inputs (n≥10⁶), 

the ML overhead was <0.1% of total time[17]. This means SmartSort’s latency is essentially the same as a regular hybrid sort plus 

negligible decision time. Therefore, SmartSort does not compromise the tight timing budgets typical of real-time tasks. 

 Case analysis: 

 Best-case: If the data distribution is extremely favorable (e.g. all elements equal), SmartSort may run as fast as Θ(n) (QuickSort 

with median-of-three can be linear in equal-key cases[8]). The decision model would likely identify this pattern and reinforce the 

most efficient path. 

 Average-case: For random or typical inputs, SmartSort behaves similarly to QuickSort with median-of-three, achieving ~n log n 

operations. With high probability, the ML classifier will route these cases through QuickSort, matching classic performance. 

Empirical studies show these hybrid schemes dominate bubble/insertion sorts on large n, with quicksort-like times[19]. 

 Worst-case: As discussed, even adversarial inputs (e.g. sorted or anti-QuickSort arrays) result in SmartSort switching to 

HeapSort. HeapSort then sorts in O(n log n) time, avoiding the n² blowup[4][3]. Thus the worst-case is always bounded. In fact, 

SmartSort’s worst-case is comparable to introsort’s guarantee[3]. 

 Limitations and considerations: SmartSort requires training of the ML model on representative data distributions. If the 

deployment data dramatically differ from the training set, classification accuracy may drop. To mitigate this, the model can be 

updated with new data or confidence thresholds can revert to safe defaults. Additionally, SmartSort (like QuickSort) is not stable, 

which is acceptable for many real-time tasks but should be noted if stability is required. 

In practical real-time systems (e.g. embedded controllers, network packet processing), SmartSort’s combined speed and 

predictability are valuable. For instance, task schedulers often need to sort jobs by priority or deadline[20]; using SmartSort ensures 

fast scheduling decisions without risking deadline misses. The scalability of SmartSort also makes it attractive for high-performance 

and big-data streams as edge AI continues to advance[21][22]. 

 

Conclusion 

SmartSort is an intelligent sorting framework designed to meet the dual goals of efficiency and real-time reliability. By hybridizing 

QuickSort and HeapSort, it merges QuickSort’s fast average-case with HeapSort’s guaranteed worst-case of O(n log n)[3][8]. 

Crucially, SmartSort introduces an AI-driven decision layer: a classifier that analyzes data patterns (such as size, range, entropy) to 

adaptively choose the optimal strategy (pivot rule or algorithm)[1][10]. This adaptive behavior allows SmartSort to exploit favorable 

cases and avoid pitfalls, resulting in consistently high throughput even as data characteristics evolve. 

Our theoretical analysis shows that SmartSort maintains O(n log n) complexity in both average and worst cases, while using only 

O(log n) auxiliary space (besides the input)[11][9]. The integration of the ML model adds only constant overhead, preserving 

bounded latency; experimental results from similar approaches indicate decision overheads on the order of 0.2ms, negligible for 

large sorts[17]. These properties ensure that SmartSort meets the predictability requirements of real-time systems: deadlines can be 

guaranteed and execution time remains deterministic with respect to worst-case bounds[7][4]. 

In conclusion, SmartSort represents a promising advance in algorithm design, leveraging AI to optimize classical algorithms under 

real-time constraints. It synthesizes ideas from recent works on learned and hybrid sorting[5][13], and provides a concrete method 

for real-time data processing tasks. Future work could involve implementing SmartSort in embedded platforms, exploring other ML 

models (e.g. reinforcement learning policies), and validating its performance on real-world real-time workloads such as streaming 

analytics or control systems. As AI continues to transform computing, SmartSort exemplifies how machine learning can be 

embedded within fundamental algorithms to meet evolving requirements. 
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