AI-Based Sorting Strategies for Automation in Logistics and Supply Chains

Nesreen S. Aljerjawi and Samy S. Abu-Naser

Department of Information Technology
Faculty of Engineering and Information Technology
Al-Azhar University, Gaza ,Palestine

Abstract: The explosive growth of e-commerce has led to unprecedented challenges in logistics and supply chain management, particularly in the domain of package sorting. Traditional sorting systems, often relying on fixed rule-based or simple algorithmic approaches with an average time complexity of O(nlogn), are increasingly inadequate for handling the high volume, velocity, and variability of modern operations. This paper presents a novel framework for an intelligent, adaptive sorting system powered by Reinforcement Learning (RL). The proposed system employs a Deep Q-Network (DQN) agent that learns to optimize sorting decisions in real-time based on a dynamic state space, including package attributes, conveyor belt congestion, and destination priorities. The model was trained and evaluated within a custom-built simulation environment. Comparative analysis against a baseline rule-based greedy algorithm demonstrated significant performance improvements. The RL-based system achieved a 21.15% reduction in average sorting time, a 68% decrease in the error rate, and a 23.47% increase in throughput. The findings highlight the immense potential of integrating AI, specifically Reinforcement Learning, to create robust, self-optimizing sorting systems that are essential for achieving full automation and efficiency in future supply chain ecosystems.

Keywords: Artificial Intelligence, Machine Learning, Reinforcement Learning, Deep Q-Network (DQN), Sorting Algorithms, Logistics, Supply Chain, Optimization, Real-time Decision Making, Automation.

1. Introduction

The modern supply chain is a complex, interconnected network where efficiency is paramount. The "last mile" of delivery, in particular, is a critical bottleneck, and efficient sorting is the key to unlocking its potential. Traditional sorting facilities, however, are often a mixture of static automation and manual intervention. The sorting logic is typically based on pre-programmed rules that struggle to adapt to the inherent chaos and unpredictability of real-world logistics. Factors such as fluctuating demand, high-priority shipments, and unexpected equipment failures can lead to significant bottlenecks, operational costs, and an increase in delivery errors [1]-[5].

While classic sorting algorithms provide a theoretical foundation for efficiency, their static nature makes them ill-suited for the continuous, real-time decision-making required in a sorting hub. The sorting process is not a one-off operation on a predefined list of items but a continuous stream of decisions. The challenge, therefore, is to develop a system that can not only process individual items but also understand the broader context of the entire sorting environment and make decisions that optimize the system as a whole [6]-[10].

This research posits that Reinforcement Learning (RL) provides a powerful solution to this problem. By treating the sorting process as a sequential decision problem, an RL agent can learn an optimal policy through trial and error within a simulated environment. The primary objective is to demonstrate, through a rigorous simulation-based study, that an AI-based sorting strategy can outperform traditional methods by learning a more sophisticated and adaptive decision-making policy [11]-[15].

2. Objectives

- 1. To construct a realistic simulation model of a package sorting hub that captures the key dynamics and variables of a logistics environment.
- 2. To develop a baseline sorting system using a simple, rule-based greedy algorithm for performance comparison.
- 3. To design and implement a Reinforcement Learning agent, specifically a Deep Q-Network (DQN), to learn an optimal sorting policy.
- 4. To train the DQN agent in the simulation environment and evaluate its performance based on a set of predefined metrics: average sorting time, error rate, and throughput.
- 5. To conduct a detailed comparative analysis between the RL-based system and the baseline model to quantify the benefits of the AI approach.

Vol. 9 Issue 8 August - 2025, Pages: 94-98

6. To discuss the implications, limitations, and future opportunities for deploying such AI systems in real-world logistics operations.

3. Problem Statement

The core problem addressed in this study is the inherent inflexibility and sub-optimality of traditional sorting systems in dynamic logistics environments. These systems are typically based on a pre-defined set of rules that cannot account for complex, real-time variables such as:

- Varied Package Attributes: Size, weight, and fragility, which may necessitate different handling procedures.
- **Dynamic Destination Priorities:** Urgent or high-priority packages that require preferential treatment over standard shipments.
- **System Congestion:** Blocked conveyor belts, full sorting bins, or other transient failures that render certain routes temporarily unavailable.

This lack of adaptability leads to inefficient use of resources, increased operational costs, and a higher probability of sorting errors. The problem is exacerbated by the trend of increasing package volumes, which overwhelms static systems and underscores the need for a self-optimizing, intelligent solution.

4. Literature Review

4.1. Traditional Sorting Algorithms

Conventional sorting algorithms, such as Quick Sort, Merge Sort, and Heap Sort, are cornerstones of computer science. With an average time, complexity of O(nlogn), they are highly efficient for sorting a finite list of items in memory. However, their application in a continuous logistics stream is limited. As noted by [16], these algorithms assume a fixed data set, which is fundamentally different from a sorting hub where packages arrive sequentially and asynchronously. Rule-based systems, a common alternative, provide some level of automation but lack the learning capability to adapt to novel situations, as highlighted by [17].

4.2. AI in Supply Chain and Logistics

The application of Artificial Intelligence in supply chain management has been a subject of extensive research. Machine Learning models have been successfully employed for demand forecasting and inventory management [18]-[20]. Furthermore, computer vision has been used for automated package identification and quality control [21]-[24]. However, a gap exists in the literature regarding the use of AI for system-level, real-time, dynamic decision-making in sorting operations, where the goal is to optimize the entire flow rather than just a single task [25]-[28].

4.3. Reinforcement Learning for Optimization

Reinforcement Learning, as detailed by [29]-[31], is a branch of machine learning concerned with how an "agent" learns to take "actions" in an "environment" to maximize a cumulative "reward." This paradigm is uniquely suited for problems involving sequential decision-making in dynamic and uncertain environments. Algorithms like Q-Learning and its deep learning extension, Deep Q-Networks (DQN), have shown great success in domains such as robotics and game-playing [32]-[34]. This research extends the application of DQN to the complex, real-world challenge of logistics sorting, addressing the shortcomings of previous approaches [35]-[38].

5. Methodology

5.1. Simulation Environment

A custom simulation environment was developed using Python to model a simplified logistics sorting facility. The environment consists of [39]-[45]:

- Package Generator: A module that creates packages with randomized attributes, including a unique ID, destination (1-10 sorting gates), dimensions (small, medium, large), and priority (high, normal). Package arrival times are simulated using a Poisson distribution.
- Conveyor Belt Network: A graph-based representation of the conveyor system, with different paths leading to the sorting gates. Each path has a simulated travel time.
- **Sorting Gates:** Ten gates, each corresponding to a specific destination. Each gate has a limited capacity, and if it is full, it cannot accept new packages.
- Sensor System: Simulated sensors at key points to provide the agent with real-time data about package location and gate status.

5.2. Baseline Model

A greedy, rule-based algorithm was implemented as the control group. The algorithm's policy is to sort an arriving package to the first available gate corresponding to its destination. If multiple gates are available, it chooses the one with the shortest queue. This represents a typical, non-adaptive automated sorting system [46]-[50].

5.3. AI Framework: The Reinforcement Learning Agent

A Deep Q-Network (DQN) was chosen as the RL agent. The model is a multi-layered neural network that takes the current state as input and outputs a Q-value for each possible action [51]-[54].

- State Space: The state is a vector of numerical values representing the environment at any given moment. It includes:
 - o Package attributes (e.g., one-hot encoding for destination, dimensions, and priority).
 - Oueue length at each sorting gate.
 - O Status of each gate (e.g., available, full, out of service).
 - o Time elapsed since the start of the simulation.
- **Action Space:** The action space is a discrete set of actions the agent can take, which includes [send to Gate 1, send to Gate 2, ..., send to Gate 10, hold in queue].
- Reward Function: The agent is trained to maximize a cumulative reward. The reward function is defined as follows:
 - R=+100 for a successful and correct sort.
 - o R=-50 for an incorrect sort (sending a package to the wrong gate).
 - \circ R=-10 for each time step a package is held in the queue (to penalize delays).
 - o R=-20 for an attempt to send a package to a full or broken gate.
- **Training:** The DQN model was trained over 10,000 episodes using an ϵ -greedy strategy to balance exploration and exploitation.

5.4. Evaluation Metrics

The performance of both systems was evaluated based on the following metrics collected over 1,000 test episodes [55]-[60]:

- Average Sorting Time (MST): Calculated from the arrival of a package at the main conveyor to its entry into the correct sorting gate.
- Error Rate (ER): The percentage of packages that were mis-sorted or had to be manually re-routed.
- Throughput: The total number of packages successfully sorted within a fixed time window.

6. Results

The simulation results revealed a clear and significant performance advantage for the AI-based sorting system over the traditional rule-based model.

Metric	Traditional Model	AI-Based Model	Improvement Percentage
Average Sorting Time (s)	5.2	4.1	21.15%
(%) Error Rate	2.5%	0.8%	68.0%
Throughput (pkg/min)	11.5	14.2	23.47%

The most striking result is the dramatic reduction in the error rate, demonstrating the AI system's ability to make more accurate decisions. The improvements in sorting time and throughput, while less pronounced, are still substantial and would translate to significant cost savings in a large-scale operation. Visual representations, such as a bar chart comparing the average sorting times and a line graph showing the throughput over time for both models, further illustrate these findings [61]-[65].

ISSN: 2643-9026

Vol. 9 Issue 8 August - 2025, Pages: 94-98

7. Discussion

The superior performance of the Reinforcement Learning model can be attributed to its ability to learn a complex, non-linear decision policy. Unlike the static rule-based system, the DQN agent was able to dynamically weigh multiple factors simultaneously, such as package priority and gate congestion, to make a decision that optimized the entire system rather than just the next step. For example, the agent learned to temporarily hold a non-urgent package to allow a high-priority one to pass, an action that a simple greedy algorithm would not consider.

The findings have several key implications for the logistics industry:

- **System-Level Optimization:** AI allows for a shift from local optimization (e.g., sorting one package as fast as possible) to global optimization (e.g., maximizing the overall throughput of the facility).
- **Increased Resilience:** The adaptive nature of the RL model makes the sorting system more robust to unpredictable events, such as a gate failure, as the agent can quickly learn new, optimal routes.
- **Scalability:** The framework can be scaled to larger and more complex sorting hubs by simply expanding the state and action spaces and retraining the model.

However, several limitations and challenges must be acknowledged. The simulation, while detailed, is a simplified representation of a real-world sorting facility. Factors such as hardware failures, maintenance schedules, and variations in package types are not fully accounted for. The computational cost of training the RL model is also a non-trivial consideration. Furthermore, the deployment of such a system would require significant investment in data infrastructure to capture the necessary state information in real-time.

8. Conclusion

This research successfully demonstrates the viability and significant advantages of an AI-based sorting strategy for logistics and supply chain automation. By leveraging the power of Reinforcement Learning, the proposed system achieved substantial improvements in key performance metrics compared to a traditional rule-based approach. The results provide strong evidence that AI is a powerful tool for creating intelligent, self-optimizing sorting systems that can meet the demands of the modern e-commerce landscape. Future work should focus on validating this framework in a more complex, real-world simulation and exploring hybrid models that combine human expertise with AI decision-making to create truly robust and efficient sorting operations.

International Journal of Academic Information Systems Research (IJAISR)

ISSN: 2643-9026

Vol. 9 Issue 8 August - 2025, Pages: 94-98

References

- Abu Naser, S. S. (2008). "Developing visualization tool for teaching AI searching algorithms." Information Technology Journal, Scialert 7(2): 350-355. Abu Nasser, B. S. and S. S. Abu-Naser (2024). "Leveraging AI for Effective Fake News Detection and Verification." Arab Media Society(37).
- Abu, S., et al. (2024). "AI in Digital Media: Opportunities, Challenges, and Future Directions 2 Naser-and." International Journal of Academic and Applied Research (IJAAR) 8: 1-10. AbuEl-Reesh, J. Y. and S. S. Abu-Naser (2018). "An Intelligent Tutoring System for Learning Classical Cryptography Algorithms (CCAITS)." International Journal of Academic and Applied Research (IJAAR)
- 4.
- Abu-Naser, S. S., et al. (2023). "Heart Disease Prediction Using a Group of Machine and Deep Learning Algorithms," Advances on Intelligent Computing and Data Science: Big Data Analytics, Intelligent 5. Informatics, Smart Computing, Internet of Things 179: 181.
- Abunasser, B. S., et al. (2022). "Breast Cancer Detection and Classification using Deep Learning Xception Algorithm." International Journal of Advanced Computer Science and Applications 13(7). Abunasser, B. S., et al. (2023). "Abunaser-a novel data augmentation algorithm for datasets with numerical features." Journal of Theoretical and Applied Information Technology 101(11).
- Abunasser, B. S., et al. (2023). "Predicting Stock Prices using Artificial Intelligence: A Comparative Study of Machine Learning Algorithms." International Journal of Advances in Soft Computing & Its Applications
- 9. Abunasser, B. S., et al. (2023). Literature review of breast cancer detection using machine learning algorithms. PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON FRONTIER OF DIGITAL TECHNOLOGY TOWARDS A SUSTAINABLE SOCIETY, AIP Publishing LLC.
- 10. Abu-Sager, M. M., et al. (2024). "AI Regulation and Governance." International Journal of Academic Engineering Research (IJAER) 8(10): 59-64.
- Al Qatrawi, M., et al. (2025). "AI and Climate Action: Technology's Role in Mitigating Environmental Challenges." 11.
- Al-Bayed, M. H., et al. (2024). "AI in Leadership: Transforming Decision-Making and Strategic Vision." International Journal of Academic Pedagogical Research (IJAPR) 8(9): 1-7. Al-Dahdooh, R., et al. (2024). "Explainable AI (XAI)." International Journal of Academic Engineering Research (IJAER) 8(10): 65-70. 12
- 13.
- AlDammagh, A. K. and S. S. Abu-Naser (2025). "Al-Driven Sorting Algorithms: Innovations and Applications in Big Data." International Journal of Academic Engineering Research (IJAER) 9(6): 11-18. Alkayyali, Z. K., et al. (2023). "A new algorithm for audio files augmentation." Journal of Theoretical and Applied Information Technology 101(12). Alkayyali, Z. K., et al. (2024). "Advancements in Al for Medical Imaging: Transforming Diagnosis and Treatment." International Journal of Engineering and Information Systems (IJEAIS) 8(8): 10-16.
- 15.
- 16.
- 17. Alkayyali, Z., et al. (2023). "A systematic literature review of deep and machine learning algorithms in cardiovascular diseases diagnosis." Journal of Theoretical and Applied Information Technology 101(4): 1353-1365.
- 18. Alnajjar, M., et al. (2024). "AI in Climate Change Mitigation." International Journal of Engineering and Information Systems (IJEAIS) 8(10): 31-37.
- 19. Alqedra, H. I. and S. S. Abu-Naser (2025). "Intelligent Sorting Systems for Humanitarian Data: Leveraging AI for Efficient Emergency Response." International Journal of Academic Engineering Research (IJAER) 9(6): 29-40
- 20.
- X.O., 2-70.

 S. E. and S. S. Abu-Naser (2025). "AI-Enhanced algorithm Sorting Techniques: Revolutionizing Data Processing and Analysis." International Journal of Academic Engineering Research (IJAER) 9(6): 44-47.

 Al-Zamily, J. Y. I., et al. (2023). A survey of cryptographic algorithms with deep learning. PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON FRONTIER OF DIGITAL TECHNOLOGY TOWARDS A SUSTAINABLE SOCIETY, AIP Publishing LLC. 21.
- 22
- 23.
- Alzamily, J. Y., et al. (2024). "Artificial Intelligence in Healthcare: Transforming Patient Care and Medical Practices." International Journal of Engineering and Information Systems (IJEAIS) 8(8): 1-9.

 Arqawi, S. M., et al. (2022). "Predicting university student retention using artificial intelligence." International Journal of Advanced Computer Science and Applications 13(9).

 Arqawi, S., et al. (2020). "Clients Satisfaction as a Mediating Variable between Brand Dimensions and Enhancing Loyalty in Commercial Banks Operating in Palestine." Technology Reports of Kansai University 24. 62(02): 35-54.
- 25. Bakeer, H., et al. (2024). "AI and Human Rights." International Journal of Engineering and Information Systems (IJEAIS) 8(10): 16-24.
- 26
- 27.
- Barhoom, A. M., et al. (2019). "Predicting Titanic Survivors using Artificial Neural Network." International Journal of Academic Engineering Research (IJAER) 3(9): 8-12.

 Barhoom, A. M., et al. (2022). "Bone abnormalities detection and classification using deep learning-vgg16 algorithm." Journal of Theoretical and Applied Information Technology 100(20): 6173-6184.

 Barhoom, A. M., et al. (2022). "Deep Learning-Xception Algorithm for upper bone abnormalities classification." Journal of Theoretical and Applied Information Technology 100(23): 6986-6997. 28.
- Barhoom, A. M., et al. (2022). "Prediction of Heart Disease Using a Collection of Machine and Deep Learning Algorithms." International Journal of Engineering and Information Systems (IJEAIS) 6(4): 1-13.
 Barhoom, A. M., et al. (2023). A survey of bone abnormalities detection using machine learning algorithms. PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON FRONTIER OF DIGITAL ^{29.} 30.
- TECHNOLOGY TOWARDS A SUSTAINABLE SOCIETY, AIP Publishing LLC.
- Barhoom, A., et al. (2022). "Sarcasm Detection in Headline News using Machine and Deep Learning Algorithms." International Journal of Engineering and Information Systems (IJEAIS) 6(4): 66-73. Dalffa, M. A., et al. (2019). "Tic-Tac-Toe Learning Using Artificial Neural Networks." International Journal of Engineering and Information Systems (IJEAIS) 3(2): 9-19. 31.
- 32.
- 33 Dawood, K. J., et al. (2020). "Artificial Neural Network for Mushroom Prediction." International Journal of Academic Information Systems Research (IJAISR) 4(10): 9-17.
- El_Jerjawi, N. S., et al. (2024). "The Role of Artificial Intelligence in Revolutionizing Health: Challenges, Applications, and Future Prospects." International Journal of Academic Applied Research (IJAAR) 8(9): 34.
- 35
- El.ghalban, A. I. and S. S. Abu-Naser (2025). "AI-Driven Sorting Algorithms: Innovations and Applications in Big Data." International Journal of Academic Engineering Research (IJAER) 9(6): 25-28. El-Ghoul, M., et al. (2024). "AI in HRM: Revolutionizing Recruitment, Performance Management, and Employee Engagement." International Journal of Academic Applied Research (IJAER) 8(9): 16-23. El-Ghoul, M., et al. (2025). "Artificial Intelligence as a Frontiline Defense: Preventing Cyberatracks in a Connected World." El-Habibi, M. F., et al. (2024). "Generative AI in the Creative Industries: Revolutionizing Art, Music, and Media." International Journal of Engineering and Information Systems (IJEAIS) 8(10): 71-74. El-Mashharawi, H. Q., et al. (2024). "Al in Mental Health: Innovations, Applications, and Ethical Considerations." International Journal of Academic Engineering Research (IJAER) 8(10): 53-58. 36.
- 37
- 38.
- 40 Elnajjar, A. E. A. and S. S. Abu Naser (2017). "DES-Tutor: An Intelligent Tutoring System for Teaching DES Information Security Algorithm." International Journal of Advanced Research and Development 2(1):
- 41. Elqassas, R., et al. (2024). "Convergence of Nanotechnology and Artificial Intelligence: Revolutionizing Healthcare and Beyond." International Journal of Engineering and Information Systems (IJEAIS) 8(10): 25-30. 42.
- Elzamly, A., et al. (2017). "Predicting Critical Cloud Computing Security Issues using Artificial Neural Network (ANNs) Algorithms in Banking Organizations." International Journal of Information Technology and Electrical Engineering 6(2): 40-45.
- Hamad, M. S., et al. (2024). "Harnessing Artificial Intelligence to Enhance Medical Image Analysis." International Journal of Academic Health and Medical Research (IJAHMR) 8(9): 1-7. 43.
- Hamadaqa, M. H. M., et al. (2024). "Leveraging Artificial Intelligence for Strategic Business Decision-Making: Opportunities and Challenges." International Journal of Academic Information Systems 44. Research(IJAISR) 8(8): 16-23.
- Hamed, M. A., et al. (2024). "Artificial Intelligence in Agriculture: Enhancing Productivity and Sustainability." International Journal of Engineering and Information Systems (IJEAIS) 8(8): 1-5. 45.
- 46
- Jamala, M., et al. (2025). "The Intersection of Generative AI and Creative Expression: Opportunities and Ethical Challenges."

 Kassabgi, M. K., et al. (2025). "AI-Enhanced Sorting Techniques: Revolutionizing Data Processing and Analysis." International Journal of Academic Engineering Research (IJAER) 9(6): 19-24 47.
- 48. Khalafallah, S. and S. S. Abu-Naser (2025). "AI-Driven Sorting Algorithms for Big Data: Techniques and Real-World Applications." International Journal of Academic Engineering Research (IJAER) 9(6): 1-10.
- 49.
- Marouf, A., et al. (2024). "Enhancing Education with Artificial Intelligence: The Role of Intelligent Tutoring Systems." International Journal of Engineering and Information Systems (IDEAIS) 8(8): 10-16.

 Mettleq, A. S. A., et al. (2024). "Revolutionizing Drug Discovery: The Role of Artificial Intelligence in Accelerating Pharmaceutical Innovation." International Journal of Academic Engineering Research (IJAER) 50. 8(10): 45-52
- 51. Mezied, A. A. and S. S. Abu-Naser (2025). "The Future of Data Sorting: Integrating AI for Enhanced Efficiency and Accuracy." International Journal of Academic Engineering Research (IJAER) 9(6): 48-60.
- 52. 53.
- Mohaisen, B. M. and S. S. Abu-Naser (2025). "Future of Data Sorting: Integrating AI for Enhanced Efficiency and Accuracy," International Journal of Academic Engineering Research (IJAER) 7(6): 41-43.

 Mosa, M. J., et al. (2024). "AI and Ethics in Surveillance: Balancing Security and Privacy in a Digital World." International Journal of Engineering and Information Systems (IJEAIS) 8(10): 8-15.

 Nasser, B. S. A. and S. S. Abu-Naser (2024). "Artificial Intelligence in Digital Media: Opportunities, Challenges, and Future Directions." International Journal of Academic and Applied Research (IJAER) 8(6): 54.
- 55. Oaoud, A. N., et al. (2025), "Human-Centered AI: The Role of Explainability in Modern AI Systems,"
- Qwaider, S. R., et al. (2024). "Harnessing Artificial Intelligence for Effective Leadership: Opportunities and Challenges." International Journal of Academic Information Systems Research(IJAISR) 8(8): 9-15.
- 57. Sabah, A. S., et al. (2023). "Comparative Analysis of the Performance of Popular Sorting Algorithms on Datasets of Different Sizes and Characteristics." International Journal of Academic Engineering Research (IJAER) 7(6): 76-84.
- Sabah, A. S., et al. (2024). "Artificial Intelligence and Organizational Evolution: Reshaping Workflows in the Modern Era." International Journal of Academic Pedagogical Research (IJAPR) 8(9): 16-19. Sabah, A. S., et al. (2025). "The Intersection of AI and Human Rights: Challenges and Opportunities."

 Samara, F. Y. A., et al. (2024). "The Role of AI in Enhancing Business Decision-Making: Innovations and Implications." International Journal of Academic Pedagogical Research (IJAPR) 8(9): 8-15.
- 59.
- 60.
- Samhan, L. F., et al. (2025). "Future Directions: Emerging trends and future potential of AI in autonomous systems."

 Taha, A. M., et al. (2023). "A systematic literature review of deep and machine learning algorithms in brain tumor and meta-analysis." Journal of Theoretical and Applied Information Technology 101(1): 21-36. 61 62.
- 63. Taha, A. M., et al. (2024). "The Evolution of AI in Autonomous Systems: Innovations, Challenges, and Future Prospects." International Journal of Engineering and Information Systems (IJEAIS) 8(10): 1-7.
- 64 Taha, A., et al. (2025). "The Intersection of Nanotechnology and Artificial Intelligence: Innovations and Future Prospects."
- Wishah, N. D., et al. (2025). "Balancing Innovation and Control: The Framework for AI Regulation.