On The Bifuzzy ψ -subalgebra of ψ -algebra

Nabaa Hasoon Jabir

Department of Mathematics
Faculty of Education for Girls, University of Kufa,
Iraq
nabaah.al-saedi@uokufa.edu.iq

Abstract: The concept tripolar fuzzy subset is a generalization of fuzzy subset. In this paper, the concept ψ -algebra, ψ -subalgebras, fuzzy ψ -subalgebra of ψ -algebras are introduced and several properties are investigated. Also, we introduce the notion bifuzzy ψ -subalgebra of ψ -algebras and we explain the relation between bifuzzy ψ -subalgebra and ψ -subalgebra.

Keywords: ψ -algebra, ψ - subalgebra, fuzzy ψ -subalgebra, bifuzzy ψ -subalgebra.

1. Introduction

In 1965, L.A. Zadeh introduced the notion of fuzzy subset, [1]. In 1976, K. Is´eki and S. Tanaka studied the notion of BCK-algebra, [2]. In 1991, O.G. Xi studied the notion of fuzzy BCK-algebra, [3]. In 2006, A.B. Saoid introduced fuzzy QS-algebra with interval-valued membership function, [4]. Also, T. Priya and T. Ramachandran introduced anti-fuzzy ideals of CI-algebra and its lower level cuts, [5]. Jun[6,7] studied the notion of cubic set as generalization of fuzzy set and interval-valued fuzzy set. In 2015, A.T. Hameed introduced the idea of SA-algebras. She stated some concepts related to it such as SA-subalgebra, SA-ideal, fuzzy SA-subalgebra and fuzzy SA-ideal of SA-algebra. She introduced the concept of homomorphisms on SA-algebra and fuzzy homomorphisms on SA-algebra, [9]. In 2023, A.T. Hameed and N.H. Jaber introduced the notion of ψ -subalgebra, ψ -ideal, bifuzzy ψ -subalgebra, bifuzzy ψ -ideal and they introduced the concept of homomorphisms on ψ -algebra and fuzzy homomorphisms on ψ -algebra.

2. Preliminaries

In this section, we give some basic definitions and preliminaries proprieties of ψ -subalgebras and fuzzy ψ -sebalgebra of ψ -algebra such that we include some elementary aspects that are necessary for this paper.

Definition 2.1.([14]. Let (X; +, -, 0) be an algebra with two operations (+) and (-) and constant (0). X is called an ψ -algebra if it satisfies the following properties: for all $x, y, z \in X$,

$$(\psi_1) \ x - x = 0,$$

$$(\psi_2) (0-x) + x = 0,$$

$$(\psi_3) (x-y) - z = x - (z+y),$$

$$(\psi_4)(y+x)-(x-z)=y+z.$$

In , we can define a binary relation (\leq) by : $x \leq y$ if and only if x + y = 0 and x - y = 0, $x, y \in X$.

Definition 2.2. [13].

Let (X; +, -, 0) be a ψ -algebra and let S be a nonempty set of X. S is called a ψ - subalgebra of X if $x + y \in S$ and $x - y \in S$, whenever $x, y \in S$.

Definition 2.3.[4].

Let X be a nonempty set, a fuzzy subset μ of X is a mapping $\mu: X \to [0,1]$.

Definition 2.4.[14].

ISSN: 2643-640X

Vol. 9 Issue 8 August - 2025, Pages: 16-20

For any $t \in [0,1]$ and a fuzzy subset μ in a nonempty set X, the set

 $U(\mu, t) = \{x \in X \mid \mu(x) \ge t\}$ is called **an upper t-level cut of \mu**, and the set $L(\mu, t) = \{x \in X \mid \mu(x) \le t\}$ is called **a lower t-level cut of \mu**.

Definition 2.5.[13].

Let (X; +, -, 0) be a ψ -algebra, a fuzzy subset μ of X is called **a fuzzy** ψ -subalgebra of X if for all $x, y \in X$,

- 1- $\mu(x + y) \ge \min\{\mu(x), \mu(y)\}\$ and
- 2- $\mu(x y) \ge \min\{\mu(x), \mu(y)\}.$

Definition 2.6. [14].

Let (X; +, -, 0) be an ψ -algebra, a fuzzy subset μ of X is called **an anti-fuzzy** ψ -subalgebra of X if for all $x, y \in X$,

 $AF\psi S_1) \ \mu (x + y) \leq \max \{\mu (x), \mu (y)\},\$

 $AF\psi S_2$) $\mu(x-y) \leq max \{\mu(x), \mu(y)\}$.

Proposition 2.7. [4].

Let μ be an anti-fuzzy subset of an ψ -algebra (X; +, -, 0).

- 1- If μ is an anti-fuzzy ψ -subalgebra of , then it satisfies for any $t \in [0, 1]$, $L(\mu, t) \neq \emptyset$ implies $L(\mu, t)$ is a ψ -subalgebra of X.
- 2- If $L(\mu, t)$ is a ψ -subalgebra of X, for all $t \in [0, 1]$, $L(\mu, t) \neq \emptyset$, then μ is an anti-fuzzy ψ -subalgebra of X.

Proposition 2.8. [4].

Let μ be an anti-fuzzy subset of an ψ -algebra (X; +, -, 0).

- 1- If μ is an anti-fuzzy ψ -ideal of , then it satisfies for any $t \in [0, 1]$, $L(\mu, t) \neq \emptyset$ implies $L(\mu, t)$ is an ψ -ideal of X.
- 2- If $L(\mu, t)$ is an ψ ideal of X, for all $t \in [0, 1]$, $L(\mu, t) \neq \emptyset$, then μ is an anti-fuzzy ψ -ideal of X.

3. Bifuzzy ψ -subalgebra of ψ -algebra

In this section, we will introduce a new notion called bifuzzy ψ -subalgebra of ψ -algebra and study several properties of it.

Definition 3.1. A bifuzzy subset A of an ψ -algebra (X; +, -, 0) is an object having the form $A = \{(x, \mu_A(x), \nu_A(x)) \mid x \in X\}$ where the functions $\mu_A: X \to [0,1]$ denote the degree of membership (namely $\mu_A(x)$) and $\nu_A: X \to [0,1]$ denote the degree of non membership (namely $\nu_A(x)$) which is called anti-fuzzy function and $0 \le \mu_A(x) + \nu_A(x) \le 1$, for all $x \in X$.

Definition 3.2.

Let (X; +, -, 0) be an ψ -algebra, a fuzzy subset v of X is called **an** anti-fuzzy ψ -subalgebra of X if for all $x, y \in X$, $v(x + y) \le \max\{v(x), v(y)\}$ and $v(x + y^-) \le \max\{v(x), v(y)\}$.

Definition 3.3.

Let $A = \{(x, \mu_A(x), \nu_A(x)) \mid x \in X\}$ be a bifuzzy subset of an ψ -algebra X. A is said to be **a bifuzzy** ψ -subalgebra of X if: for all $x, y \in X$,

(IFS₁)
$$\mu_A(x + y) \ge \min \{\mu_A(x), \mu_A(y)\}\$$
and $\mu_A(x + y^-) \ge \min \{\mu_A(x), \mu_A(y)\}.$

(IFS₂)
$$\nu_A(x+y) \le \max \{\nu_A(x), \nu_A(y)\}$$
 and $\nu_A(x+y^-) \le \max \{\nu_A(x), \nu_A(y)\}.$

i.e., μ_A is a fuzzy ψ -subalgebra of an ψ -algebra and ν_A is an anti-fuzzy ψ -subalgebra of an ψ -algebra.

Example 3.4.

Let $X = \{0,1,2,3\}$ in which (+,-) be defined by the following table

+	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

-	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

Then (X; +, -, 0) is an ψ -algebra. It is easy to show that $S_1 = \{0,1\}$, $S_2 = \{0,2\}$ and $S_3 = \{0,3\}$ are ψ -subalgebras of X. Define a fuzzy subset

$$\mu_A$$
: $X \to [0,1]$ such that $\mu_A(0) = 0.7$, $\mu_A(1) = \mu_A(2) = 0.6$, $\mu_A(3) = 0.4$, ν_A : $X \to [0,1]$ such that $\nu_A(0) = 0.3$, $\nu_A(1) = \nu_A(2) = 0.4$, $\nu_A(3) = 0.6$.

Routine calculation gives that μ_A is a fuzzy ψ -subalgebra of X and that ν_A is anti-fuzzy ψ -subalgebra of X.

Proposition 3.5.

Every bifuzzy ψ -subalgebra $A = \{(x, \mu_A(x), \nu_A(x)) \mid x \in X\}$ of an ψ -algebra (X; +, -, 0) satisfies the inequalities

$$\mu_A(0) \ge \mu_A(x)$$
 and $\nu_A(0) \le \nu_A(x)$, for all $x \in X$.

Proof:

$$\mu_A(0) = \mu_A(x + x^-) \ge \min\{\mu_A(x), \mu_A(x)\} = \mu_A(x)$$
 and

$$v_A(0) = v_A(x + x^-) \le \max\{v_A(x), v_A(x)\} = v_A(x). \square$$

Definition 3.6.

For fuzzy subsets μ_A and ν_A of an ψ -algebra (X; +, -, 0) and $t \in \text{Im}(\mu_A)$, $U(\mu_A, t) = \{x \in X \mid \mu_A(x) \ge t \}$ and $s \in \text{Im}(\nu_A)$,

$$L(\nu_A, s) = \{x \in X | \nu_A(x) \le s\}.$$

Remark 3.7.

1- If μ_A is a fuzzy ψ -subalgebra of ψ -algebra (X; +, -, 0), then it is that $U(\mu_A, t)$ is a ψ -subalgebra of X, for any $t \in \text{Im}(\mu)$.

Let
$$y \in U(\mu_A, t)$$
, then $\mu_A(x) \ge t$, and $\mu_A(y) \ge t$, then

 $\min\{ \mu_A(x), \mu_A(y) \} \ge t$, since μ_A is a fuzzy ψ -subalgebra, then $\mu_A(x+y) \ge \min\{ \mu_A(x), \mu_A(y) \} \ge t$, therefore $x+y \in U(\mu_A, t)$ and

$$\mu_A(x-y) \ge \min \{ \mu_A(x), \mu_A(y) \} \ge t$$
, therefore $x-y \in U(\mu_A, t)$.

2- If v_A is anti-fuzzy ψ -subalgebra of X, then it is that $L(v_A, s)$ is a ψ -subalgebra of X, for any $s \in \text{Im}(v)$.

Let
$$x, y \in L(v_A, s)$$
, then $v(x) \le s$ and $v(y) \le s$, then

 $\max\{\nu_A(x), \nu_A(y)\} \le s$, since ν_A is anti-fuzzy ψ -subalgebra, then

Vol. 9 Issue 8 August - 2025, Pages: 16-20

 $v_A(x+y) \le \max\{v_A(x), v_A(y)\} \le s$, therefore $x+y \in L(v_A, s)$ and $v_A(x+y^-) \le \max\{v_A(x), v_A(y)\} \le s$, therefore $+y^- \in L(v_A, s)$.

3- But if we do not give a condition that μ_A is a fuzzy ψ -subalgebra of X, then $U(\mu_A, t)$ is not a ψ -subalgebra of X or ν_A is anti-fuzzy ψ -subalgebra of X, then $L(\nu_A, s)$ is not a ψ -subalgebra of X as seen in the following example.

Example 3.8.

Let $X = \{0,1,2,3\}$ is an ψ -algebra which is given in Example (4.1.4).

Define a fuzzy subset μ_A of X:

X	0	1	2	3
μ_A	0.7	0.6	0.5	0.3

Then μ_A is not a fuzzy ψ -subalgebra of X.

Since $\mu_A(1+2) = 0.3 \ge 0.5 = \min\{ \mu_A(1), \mu_A(2) \}.$

For t = 0.5, we obtain $U(\mu_A, t) = \{0, 1, 2\}$ which is not an ψ -subalgebra of X since $1+2=3 \notin U(\mu_A, t)$.

Proposition 3.9.

Let $A = \{(x, \mu_A(x), \nu_A(x)) \mid x \in X\}$ be a bifuzzy subset of an ψ -algebra (X; +, -, 0). If A is a bifuzzy ψ -subalgebra of X, then for any $t, s \in [0, 1]$, $U(\mu_A, t) \neq \emptyset$ implies $U(\mu_A, t)$ is a ψ -subalgebra of X and $L(\nu_A, s) \neq \emptyset$ implies $L(\nu_A, s)$ is a ψ -subalgebra of X.

Proof:

Assume that μ_A is a fuzzy ψ -subalgebra of X, let $t \in [0,1]$ be such that $U(\mu_A, t) \neq \emptyset$, and let $x, y \in X$ be such that $x, y \in U(\mu_A, t)$, then

 $\mu_A(x) \ge t$ and $\mu_A(y) \ge t$, so $\mu_A(x + y) \ge \min\{\mu_A(x), \mu_A(y)\} \ge t$, so that $(x + y) \in U(\mu_A, t)$. Similarly, $(x + y^-) \in U(\mu_A, t)$.

Hence $U(\mu_A, t)$ is a ψ -subalgebra of X.

Assume that v_A is an anti-fuzzy ψ -subalgebra of X, let $s \in [0,1]$ be such that $L(v_A, s) \neq \emptyset$, and let $x, y \in X$ be such that $x, y \in L(v_A, s)$, then $v_A(x) \leq s$ and $v_A(y) \leq s$, so $v_A(x + y) \leq \max\{v_A(x), v_A(y)\} \leq s$,

so that $(x + y) \in L(v_A, s)$.

Similarly, $(x + y^{-}) \in U(v_A, s)$.

Hence $L(v_A, s)$ is a ψ -subalgebra of X. \square

Proposition 3.10.

Let $A = \{(x, \mu_A(x), \nu_A(x)) \mid x \in X\}$ be a bifuzzy subset of an ψ -algebra (X; +, -, 0). If $U(\mu_A, t)$ and $L(\nu_A, s)$ are ψ -subalgebras of X, for all $t, s \in [0, 1]$, $U(\mu_A, t) \neq \emptyset \neq L(\nu_A, s)$, then A is a bifuzzy ψ -subalgebra of X.

Proof:

Suppose that A is not bifuzzy ψ -subalgebra of X, satisfies $U(\mu_A, t)$ is a ψ -subalgebra of X. Now, assume $\mu_A(x + y) < \min \{\mu_A(x), \mu_A(y)\}$,

taking
$$t_0 = (\mu_A (x + y) + \min\{\mu_A (x), \mu_A (y)\})/2$$
, we have $t_0 \in [0,1]$

and $\min\{\mu_A(x), \mu_A(y)\} > t_0 > \mu_A(x+y)$, it follows that $x, y \in U(\mu_A, t_0)$

and $x + y \notin U(\mu_A, t_0)$, this is a contradiction since $U(\mu_A, t_0)$ is a ψ -subalgebra of X. Similarity, $(x - y) \in U(\mu_A, t_0)$.

Since $L(\nu_A, s)$ is a subalgebra of X, assume $\nu_A(x + y) > \max{\{\nu_A(x), \nu_A(y)\}}$,

taking
$$s_0 = (v_A(x+y) + \max\{v_A(x), v_A(y)\})/2$$
, we have $s_0 \in [0, 1]$ and $\max\{v_A(x), v_A(y)\} < s_0 < v_A(x+y)$, it follows that $x, y \in L(v_A, s_0)$ and $x + y \notin L(v_A, s_0)$,

this is contradiction since $L(v_A, s_0)$ is a ψ -subalgebra of X.

Similarly,
$$(x + y^{-}) \in L(v_A, s_0)$$
.

Therefore *A* is a bifuzzy ψ -subalgebra of *X*. \Box

References

- [1] A.T. Hameed and B.H. Hadi, **Anti-Fuzzy AT-Ideals on AT-algebras**, Journal Al-Qadisyah for Computer Science and Mathematics, vol.10, no.3(2018), 63-74.
- [2] A.T. Hameed and B.H. Hadi, **Interval-valued bifuzzy AT-subalgebras and Fuzzy AT-Ideals on AT-algebra**, World Wide Journal of Multidisciplinary Research and Development, vol.4, no.4(2018), 34-44.
- [3] A.T. Hameed and E.K. Kadhim, **Interval-valued IFAT-ideals of AT-algebra**, Journal of Physics: Conference Series (IOP Publishing), 2020, pp:1-5.
- [4] A.T. Hameed and N.H. Malik, (2021), (**β**, **α**)-Fuzzy Magnified Translations of AT-algebra, Journal of Physics: Conference Series (IOP Publishing), 2021, pp:1-13.
- [5] A.T. Hameed and N.H. Malik, (2021), **Magnified translation of intuitionistic fuzzy AT-ideals on AT-algebra**, Journal of Discrete Mathematical Sciences and Cryptography, (2021), pp:1-7.
- [6] A.T. Hameed and N.J. Raheem, (2020), **Hyper SA-algebra**, International Journal of Engineering and Information Systems (IJEAIS), vol.4, Issue 8, pp.127-136.
- [7] A.T. Hameed and N.J. Raheem, (2021), **Interval-valued Fuzzy SA-ideals with Degree (λ,κ) of SA-algebra**, Journal of Physics: Conference Series (IOP Publishing), 2021, pp:1-13.
- [8] A.T. Hameed, N.J. Raheem and A.H. Abed, (2021), **Anti-fuzzy SA-ideals with Degree** (λ,κ) of **SA-algebra**, Journal of Physics: Conference Series (IOP Publishing), 2021, pp:1-16.
- [9] A.T. Hameed, S.H. Ali and , R.A. Flayyih, **The Bipolar-valued of Fuzzy Ideals on AT-algebra**, Journal of Physics: Conference Series (IOP Publishing), 2021, pp:1-9.
- [10] A.T. Hameed, H.A. Mohammed and A.H. Abed, Anti-fuzzy ideals of BZ-algebras, (2023).
- [11] A.T. Hameed, S.M. Mostafa and A.H. Abed, **Cubic KUS-ideals of KUS-algebras**, Asian Journal of Mathematical Sciences, vol. 8, no. 2, pp:36 43, (2017).
- [12] K. Is'eki and S. Yanaka, An Introduction to Theory of BCK-algebras, Math. Japonica, vol. 23 (1979), pp:1-20.
- [13] Jabir N.H. and Hameed A.T. (2023), On The ψ -subalgebras of ψ -algebra, International Journal of Academic and Applied Reserch, ISSN: 2643-9603, Vol.7, Issue 4, Pages:8-11.
- [14] Jabir N.H. and Hameed A.T. (2023), On the ψ -algebra, Journal of Interdisciplinary Mathematics, ISSN:0972-0502 (Pirnt), ISSN: 2169-012X(On line).
- [15] Jabir N.H. and Hameed A.T. (2023), On The Translations Bifuzzy ψ -ideal of ψ -algebra, Journal of Kufa

for Mathematics, Vol.10, No.2, Pages:140-160.