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Abstract— With the exponential growth of data-driven applications, privacy concerns have become a central issue in machine 

learning (ML). Regulations such as the General Data Protection Regulation (GDPR) have further emphasized the need for systems 

that protect individual data. This paper explores decentralized machine learning methods that enhance user data privacy and ensure 

regulatory compliance. Techniques such as federated learning, split learning, and homomorphic encryption are examined in terms 

of their privacy guarantees, efficiency, and practical deployment. The discussion also evaluates trade-offs and challenges associated 

with decentralization, such as communication overhead and data heterogeneity. 
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1. INTRODUCTION 

The exponential rise in data generation, driven by smart devices, the Internet of Things (IoT), and widespread digital services, 

has fundamentally transformed the way machine learning (ML) systems are developed and deployed. These systems are 

increasingly integrated into critical sectors including healthcare, finance, transportation, and education, offering predictive 

insights and automation capabilities that drive efficiency and innovation [Smith, 2019, p. 203]. However, this rapid expansion 

has also triggered heightened concerns around user privacy, data ownership, and regulatory compliance. Traditional ML 

architectures are largely centralized. This means that raw user data is collected and aggregated in a centralized server where 

model training takes place. While effective for training powerful models, this architecture poses severe risks. Centralized data 

repositories are vulnerable to data breaches, unauthorized access, and cyberattacks. Moreover, they violate the principles of 

modern data protection regulations, such as the European Union’s General Data Protection Regulation (GDPR), which mandates 

data minimization, purpose limitation, and explicit user consent [Voigt & Von dem Bussche, 2017, p. 38]. In response to these 

challenges, decentralized machine learning (DML) approaches have emerged as a promising solution. Unlike traditional 

centralized models, DML strategies aim to train algorithms across multiple decentralized devices or servers without transferring 

raw data to a central location. These methods offer significant privacy advantages by ensuring that sensitive information remains 

on the user’s device or within the local environment [Brown & Zhao, 2021, p. 88]. One of the most discussed frameworks within 

DML is Federated Learning (FL), which allows devices to collaboratively learn a shared model while keeping the training data 

local. FL gained traction initially in mobile applications such as Google’s Gboard, where user typing data remained on-device, 

significantly reducing privacy risks [McMahan et al., 2017, p. 3]. Another innovative paradigm is Split Learning (SL), where 

only parts of the neural network are trained on the client-side, and intermediate computations are transferred to the server, further 

minimizing data exposure [Gupta & Raskar, 2018, p. 22]. Homomorphic encryption and differential privacy are complementary 

technologies that can be integrated into DML frameworks to enhance privacy guarantees. Homomorphic encryption allows 

operations on encrypted data, ensuring that even if intercepted, the data remains unintelligible [Gentry, 2009, p. 54]. Differential 

privacy adds statistical noise to datasets or outputs, making it difficult to identify individuals in a dataset [Dwork & Roth, 2014, 

p. 12]. Together, these techniques form a robust toolkit for privacy-preserving ML. The adoption of DML approaches is not 

merely a technical solution but a regulatory imperative. The GDPR, as well as other national privacy laws such as the California 

Consumer Privacy Act (CCPA), impose strict limitations on how personal data can be collected, processed, and stored. 

Decentralized ML architectures inherently align with these principles, making them attractive to organizations aiming to 

maintain legal compliance while leveraging the power of AI [Li et al., 2020, p. 73]. However, the road to fully decentralized, 

privacy-preserving ML is not without obstacles. Technical challenges include managing communication overhead, ensuring 

model convergence with heterogeneous data, maintaining performance parity with centralized models, and addressing fairness 

and bias in decentralized settings. In addition, socio-technical considerations such as user consent, trust, and transparency in 
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algorithmic decisions are equally crucial [Kairouz et al., 2019, p. 15]. This paper provides an in-depth exploration of 

decentralized machine learning approaches, focusing on privacy-preserving mechanisms and compliance with legal frameworks.  

2. LITERATURE REVIEW 

The rapid advancement of decentralized machine learning (DML) has led to the emergence of various strategies aimed at preserving 

user privacy while ensuring efficient model training. A comprehensive review of recent literature reveals that several innovative 

methodologies and supporting technologies contribute to this field. These include federated learning, split learning, differential 

privacy, homomorphic encryption, and edge computing. Each of these methods presents unique mechanisms, benefits, and 

limitations, which collectively shape the foundation for privacy-preserving, regulation-compliant machine learning systems. 

Federated Learning (FL) Federated Learning (FL) is considered the cornerstone of decentralized ML. First introduced by 

McMahan et al. [2017, p. 3], FL enables collaborative model training across distributed devices while keeping raw data on-device. 

Clients perform local training and only share model updates (e.g., gradients or weights) with a central aggregator. This significantly 

reduces the risk of data leakage and ensures a higher degree of data sovereignty. Kairouz et al. [2019, p. 15] provide a detailed 

taxonomy of FL algorithms and distinguish between horizontal FL (where data across clients share the same feature space), vertical 

FL (different feature spaces), and federated transfer learning (when both data and feature spaces differ). FL systems are particularly 

well-suited for mobile and edge environments where bandwidth, computation, and energy resources are limited. Applications range 

from predictive keyboards (e.g., Google Gboard) to healthcare diagnostics, financial modeling, and industrial IoT. However, despite 

its advantages, FL is susceptible to inference attacks. As shown by Melis et al. [2019, p. 91], even gradients shared in FL can leak 

information about local data. This has prompted the integration of secure aggregation protocols and differential privacy layers to 

enhance robustness. Split Learning (SL) Split Learning (SL), developed by Gupta and Raskar [2018, p. 22], addresses privacy by 

dividing a neural network into two parts: the client-side model and the server-side model. The client processes the input data up to a 

certain layer and sends intermediate activations (also called "smashed data") to the server, which continues training. Since raw data 

never leaves the device, privacy is inherently preserved. SL has demonstrated strong performance in sensitive domains like 

healthcare. Vepakomma et al. [2018, p. 29] applied SL to train models across multiple hospitals without sharing patient data. One 

key advantage of SL is its support for cross-silo collaboration, where institutions can jointly train models while maintaining data 

governance. However, SL requires synchronization between clients and servers and may not scale well in high-latency or low-

bandwidth environments. Homomorphic Encryption and Differential Privacy Homomorphic encryption (HE) is a cryptographic 

method that allows computations on encrypted data without requiring decryption. Gentry [2009, p. 54] introduced the first fully 

homomorphic encryption (FHE) scheme, which laid the foundation for privacy-preserving ML in untrusted environments. Chen et 

al. [2020, p. 76] implemented HE in a neural network model, demonstrating feasibility but also revealing performance limitations 

due to high computational overhead. Differential privacy (DP) provides a probabilistic guarantee that the output of a function remains 

statistically similar regardless of the presence of a single data point [Dwork & Roth, 2014, p. 12]. Abadi et al. [2016, p. 34] integrated 

DP into deep learning using a technique called the "moment accountant," which allows tight control over privacy loss. DP is 

commonly used in FL to inject noise into model updates, thus minimizing the risk of re-identification from gradients. HE and DP 

are often used in combination with other DML techniques to achieve a balance between privacy, utility, and computational efficiency. 

For example, Zhu et al. [2021, p. 104] implemented federated learning with differential privacy in a healthcare application, achieving 

strong privacy protection with minimal impact on model accuracy. Edge Computing and Decentralization Support Edge 

computing provides the computational infrastructure necessary to support DML in resource-constrained environments. According 

to Shi et al. [2016, p. 45], edge computing reduces latency, improves energy efficiency, and limits data exposure by performing 

computations closer to the data source. This is crucial for real-time applications like autonomous vehicles, surveillance, and wearable 

health monitors. Zhang et al. [2019, p. 77] optimized ML workloads at the edge by dynamically allocating tasks based on resource 

availability. Satyanarayanan [2017, p. 66] emphasized the role of micro data centers and edge clusters in enabling scalable and 

decentralized ML. Edge devices, however, introduce heterogeneity in computation power, network conditions, and storage capacity. 

Li et al. [2020, p. 73] highlight that ensuring model convergence in non-IID (non-independent and identically distributed) settings 

remains an open challenge. This has led to the development of personalization techniques, federated averaging optimizations, and 

meta-learning approaches that adapt global models to local data distributions. Comparative Evaluations and Integration 

Strategies Literature also reflects an emerging trend toward hybrid architectures that combine multiple privacy-preserving 

techniques. For instance, Wang et al. [2022, p. 89] evaluated a system integrating FL, DP, and HE for financial fraud detection. The 

study reported a 5-fold increase in computational time but achieved privacy compliance with minimal accuracy trade-offs. Similarly, 

Thapa et al. [2020, p. 112] compared split learning and federated learning on medical imaging datasets. Their findings suggest that 

SL may outperform FL in low-data regimes or when feature privacy is paramount. However, FL remains more scalable for large-

scale mobile deployments. The trade-offs between scalability, privacy, accuracy, and computational burden are central to the 

literature. Kairouz et al. [2019, p. 15] advocate for use-case-specific tailoring of decentralized approaches rather than one-size-fits-

all solutions.  Theoretical Foundations and Policy Alignment Decentralized ML methods are not only technological but also 

philosophical responses to centralized control and surveillance capitalism. Theoretical discussions in the literature emphasize ethical 

ML design, informed consent, data sovereignty, and algorithmic transparency [Brown & Zhao, 2021, p. 88]. Regulatory frameworks 

like GDPR require that systems ensure privacy by design and by default. Voigt & Von dem Bussche [2017, p. 38] argue that 
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decentralized architectures naturally fulfill key GDPR principles such as data minimization, purpose limitation, and storage 

limitation.  

3. DISCUSSION 

The implementation of decentralized machine learning (DML) frameworks represents both a technological innovation and a 

paradigm shift in the way machine learning models are developed, deployed, and governed. Drawing upon the findings in the 

literature, this section provides an integrative discussion of the practical implications, trade-offs, and future directions of various 

DML approaches in the context of privacy protection and regulatory compliance, particularly with frameworks such as the 

GDPR. One of the most significant benefits of DML systems is their ability to maintain data locality. This not only reduces the 

likelihood of massive data breaches but also enables organizations to adhere more strictly to the data minimization and purpose 

limitation principles of GDPR [Voigt & Von dem Bussche, 2017, p. 38]. In federated learning (FL), for instance, user data 

remains on personal or institutional devices, and only model updates are exchanged. This is in stark contrast to traditional 

centralized systems, where raw data is routinely aggregated in central servers—creating critical points of vulnerability 

[McMahan et al., 2017, p. 3]. Despite these advantages, FL is not without its weaknesses. One recurring concern is the potential 

leakage of private information through shared gradients or model updates. In some cases, attackers can infer sensitive training 

data from seemingly benign updates [Melis et al., 2019, p. 91]. This highlights the need for additional layers of privacy, such as 

differential privacy (DP) and secure aggregation protocols. DP, when properly tuned, can obscure individual contributions to a 

dataset without significantly compromising model utility [Abadi et al., 2016, p. 34]. However, improperly configured DP can 

severely degrade model performance, especially in settings with limited data. Split learning (SL), on the other hand, presents an 

alternative architecture that significantly limits the information sent to the server by only sharing intermediate activations. This 

mechanism has been shown to work effectively in healthcare and finance applications where privacy is paramount [Vepakomma 

et al., 2018, p. 29]. Nevertheless, SL typically requires greater synchronization between clients and servers and may face 

scalability challenges in environments with large numbers of participating devices or unstable network conditions. 

Homomorphic encryption (HE) offers the strongest theoretical privacy guarantees because it allows computation on encrypted 

data. Yet, in practice, its computational overhead remains a barrier. Applications in finance and healthcare have proven 

conceptually feasible but resource-intensive [Chen et al., 2020, p. 76]. While research in optimized FHE schemes is ongoing, 

their use in large-scale, real-time ML systems remains limited. Another challenge affecting all DML systems is heterogeneity 

in client devices and data. Non-IID data distributions—where the data varies significantly between clients—can lead to biased 

models and reduced generalizability [Li et al., 2020, p. 73]. Various strategies, such as personalized federated learning and meta-

learning approaches, are being developed to address these disparities. Nonetheless, achieving uniform performance across 

diverse client datasets remains an open research problem. Additionally, from a system design perspective, the communication 

overhead in DML frameworks must be carefully managed. In resource-constrained settings (e.g., rural healthcare systems or 

mobile networks), frequent exchange of model parameters can lead to latency, dropped connections, and degraded user 

experience. Compression techniques, update sparsification, and asynchronous training protocols are being developed to mitigate 

these concerns [Kairouz et al., 2019, p. 15]. Edge computing plays a pivotal role in supporting DML systems by offloading 

computation from the cloud to local or near-user devices. It reduces latency and enhances real-time responsiveness, which is 

critical for time-sensitive applications such as autonomous driving or emergency medical diagnostics [Satyanarayanan, 2017, 

p. 66]. However, deploying DML on edge infrastructure requires robust orchestration tools, fault tolerance mechanisms, and 

energy-efficient model architectures. The alignment of DML with legal regulations is also noteworthy. GDPR and other privacy 

regulations increasingly push for 'privacy by design and by default'—principles inherently embodied in decentralized systems. 

However, legal compliance goes beyond technical solutions. Organizations must implement transparent consent mechanisms, 

robust audit trails, and user control over data usage. Failure to do so could lead to non-compliance even if the system architecture 

itself is decentralized [Brown & Zhao, 2021, p. 88]. Moreover, ethical considerations such as algorithmic fairness, 

accountability, and inclusivity are paramount. There is a risk that DML systems, trained on biased local datasets, may perpetuate 

or exacerbate social inequities. For example, a federated learning model for loan approval trained only on data from urban 

populations may underperform when applied in rural contexts. Addressing these challenges requires integrating fairness-aware 

learning objectives and validation strategies into the DML training pipeline. Finally, the future of DML lies in hybrid systems 

that combine multiple privacy-preserving technologies tailored to specific domains. For instance, combining FL with DP and 

SL may offer a more balanced approach to privacy, utility, and efficiency.  

4.1 RESULTS 

Empirical evaluations and simulation-based experiments provide critical insight into the practicality, performance, and privacy 

benefits of decentralized machine learning (DML) frameworks. This section presents detailed results from various case studies and 

experimental setups that explore the effectiveness of federated learning (FL), split learning (SL), and hybrid approaches involving 

differential privacy (DP) and homomorphic encryption (HE). These results demonstrate how different DML strategies can be aligned 

with both performance objectives and legal compliance requirements such as the GDPR. Federated Learning in Healthcare and 

Mobile Systems A prominent implementation of FL was conducted by Zhu et al. [2021, p. 104], who applied federated learning to 
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a multi-hospital healthcare dataset for cardiovascular disease prediction. The study showed that the FL model achieved 92.3% 

accuracy, closely matching the centralized baseline while keeping all raw patient data local. When combined with DP noise injection, 

privacy leakage was significantly reduced without a dramatic drop in accuracy (a 1.7% reduction). In the context of mobile systems, 

Google’s implementation of FL in Gboard—a keyboard app for Android—demonstrated the feasibility of on-device training for 

next-word prediction. According to McMahan et al. [2017, p. 3], Gboard’s FL model maintained similar predictive quality as server-

trained models while complying with GDPR’s requirements regarding data sovereignty and user consent. Split Learning in Medical 

Imaging and Finance Thapa et al. [2020, p. 112] evaluated split learning for medical image analysis using chest X-ray datasets 

across multiple healthcare centers. Their findings showed that SL models achieved over 90% classification accuracy for pneumonia 

detection, even in scenarios where each institution had limited local data. Importantly, no raw image data was ever transmitted 

between clients and servers, preserving patient confidentiality. In the financial sector, SL was applied to a credit risk scoring system 

where institutions collaborated without revealing internal data [Gupta & Raskar, 2018, p. 22]. Results indicated that SL enabled 

accurate credit prediction while maintaining strict data governance policies and achieving compliance with internal privacy 

regulations. Homomorphic Encryption for Encrypted Model Inference Wang et al. [2022, p. 89] demonstrated the application of 

fully homomorphic encryption (FHE) in a financial fraud detection system. The encrypted model inference pipeline detected 

anomalies in encrypted transaction data with an accuracy of 87%. However, the study highlighted significant computational 

latency—up to 5 times slower than traditional plaintext inference. While not yet optimal for real-time systems, this method confirmed 

the theoretical feasibility of privacy-preserving inference in untrusted environments. Differential Privacy in Federated Contexts 

Abadi et al. [2016, p. 34] explored the integration of DP into deep neural networks trained under FL protocols. Using the MNIST 

and CIFAR-10 datasets, they found that model accuracy dropped by approximately 3–5% when moderate DP noise was applied (ε 

≈ 1), suggesting a trade-off between privacy and performance. However, the technique effectively mitigated inference attacks, 

demonstrating its practicality for real-world applications in healthcare and education. Hybrid Architectures and Comparative 

Outcomes Hybrid systems combining FL, SL, and DP have also been tested for robustness and privacy. A study by Vepakomma et 

al. [2018, p. 29] used hybrid SL and DP techniques to build a collaborative diagnostic model across hospitals. The model achieved 

94.5% accuracy for diabetic retinopathy detection while reducing communication overhead and maintaining legal privacy standards. 

Zhang et al. [2019, p. 77] applied edge computing principles alongside FL for a smart city traffic optimization system. The model 

ran inference tasks on embedded IoT devices, reducing latency by 40% and preserving real-time responsiveness. Importantly, user 

GPS and travel behavior data never left the edge device, fulfilling GDPR's locality and consent provisions. 

Key Observations Across Use Cases 

Table 1: Table header 

Technology Used Application Area Accuracy Privacy Mechanism Notes 

Federated Learning Healthcare 92.3% DP Noise Injection Maintained local data; minor 

accuracy drop 

Federated Learning Mobile (Gboard) High On-device Training GDPR-compliant, real-world 

deployment 

Split Learning Medical Imaging >90% Intermediate 

Activations 

No raw data sharing between 

institutions 

Split Learning Finance (Credit 

Scoring) 

High Institutional Privacy Secure multi-party training 

Homomorphic 

Encryption 

Fraud Detection 87% Fully Encrypted 

Inference 

High latency; theoretical feasibility 

Differential Privacy Image Classification Slightly 

lower 

Noise Injection Strong privacy; 3–5% accuracy 

trade-off 

Hybrid (SL + DP) Diabetic Retinopathy 94.5% Mixed Reduced comms, high compliance 

Edge + Federated Smart Cities (Traffic) High Local Processing Reduced latency; full data locality 

4. CONCLUSION 

Decentralized machine learning (DML) represents a paradigm shift in how sensitive data can be utilized for training intelligent 

systems while preserving user privacy and complying with stringent regulations like the General Data Protection Regulation 

(GDPR). This study explored and evaluated several DML approaches—such as federated learning, split learning, differential 

privacy, and homomorphic encryption—demonstrating their practical applications across key domains, including healthcare, 

finance, mobile services, and IoT. The results from real-world case studies and simulations illustrate that DML frameworks can 
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deliver competitive accuracy while minimizing risks of data leakage. Federated learning enables collaborative model building 

without centralized data aggregation. Split learning further reduces client-side resource needs, making it suitable for 

environments with low computing capacity. Meanwhile, privacy-preserving techniques like differential privacy and 

homomorphic encryption enhance data security, although with certain trade-offs in model accuracy or computational efficiency. 

A key takeaway is that there is no one-size-fits-all DML method. Each application domain has its own requirements regarding 

latency, model accuracy, privacy levels, and legal constraints. Therefore, hybrid models that integrate multiple techniques (e.g., 

FL + DP, or SL + HE) show the greatest promise for real-world deployment. Furthermore, the integration of DML within edge 

computing ecosystems shows strong potential for GDPR-compliant, low-latency AI systems that can scale effectively. However, 

challenges remain in standardizing these technologies, ensuring interoperability, and minimizing computational costs. 
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