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Abstract— The growing need for autonomous technologies and real-time decision-making is propelling the logistics sector's rapid 

digital transformation.  In order to improve autonomous logistics systems' scalability, security, and energy efficiency, this article 

suggests a federated edge-cloud architecture.  The architecture decentralises data processing by combining edge computing and 

federated learning, which lowers latency and protects privacy by preventing the transport of raw data to central servers.  To improve 

global learning models, local edge devices execute model updates that are safely aggregated in the cloud.  A tri-layered architecture 

that combines cloud orchestration and edge autonomy, battery-aware dynamic routing for energy optimisation, and federated 

anomaly detection to provide resilience against disruptions are some of the main achievements.  According to experimental 

evaluation, delivery times can be shortened by up to 35% and energy usage can be decreased by 30%.  Future developments like 

blockchain-enabled trust and 6G-driven smart logistics are covered in the paper's conclusion. 
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1. INTRODUCTION  

The logistics industry has changed a lot in the past ten years because of the huge growth of e-commerce, globalisation, and 

customers' growing demands for faster and more environmentally friendly deliveries.  The complexity and unpredictability of modern 

urban supply chains have made traditional centralised logistics systems, which rely on static routing, human oversight, and isolated 

decision-making, inadequate [6].  These systems often have problems with high latency, scalability, and not being able to adapt to 

changes in real-time demand or infrastructure outages.  Researchers and professionals are looking into Autonomous Logistics Systems 

(ALS), which are networks of self-driving trucks, drones, and IoT-enabled hubs that can make deliveries without any human help and 

make the most of real-time coordination. This is being done to solve these problems [1, 13].  Studies have shown that the ALS method 

lowers costs while also making deliveries much faster and more reliable [5].There is a lot of potential for autonomous logistics, but 

using them on a large scale is still difficult because they rely on centralised cloud computing infrastructures. In cloud-based models, 

data processing and decision-making happen on remote servers. This makes communication slower, uses more bandwidth, and makes 

the system more likely to fail at one point [8]. Also, the huge amounts of raw data that self-driving cars, sensors, and IoT devices 

collect must be sent to the cloud, which raises serious privacy and security issues [10]. These problems make centralised approaches 

bad for logistics networks that change quickly, especially in cities where routing decisions need to be made in real time. Edge 

computing has recently made progress that has led to a new way of doing distributed computing that processes data closer to its source. 

This cuts down on latency and makes the system more responsive [7]. Federated learning has also become a complementary paradigm 

that lets machine learning models be trained in a distributed way without having to share raw data. This improves privacy and 

scalability [1, 11]. 

A federated edge-cloud architecture built on a strong base of edge computing and federated learning fixes the problems with 

traditional centralised logistics systems right away.  In this hybrid model, the cloud combines information from different places to 

make models that work best for everyone. Edge nodes, like delivery drones, driverless cars, and local hubs, can do important tasks in 

real time, like changing routes, avoiding obstacles, and managing energy [2, 12].  This design makes it possible to make quick decisions 

close to the data source. It also makes use of cloud computing's ability to coordinate large groups of people. According to studies, 

these distributed methods are especially well-suited for massive fleets of autonomous logistics systems functioning in both urban and 

rural settings since they not only lower latency but also enhance privacy, robustness, and scalability [18, 24].  These new technologies 

are driving the development of a new generation of smart, decentralised logistics systems that can better handle operational 

interruptions [21]. In large-scale autonomous logistics, one of the biggest problems is making sure that fleets of drones and electric 

vehicles use as little energy as possible and keep running. Traditional logistics planning doesn't take vehicle energy limits into account 

enough, which makes routing less effective and increases downtime. The federated edge-cloud paradigm [3, 4] makes it possible to 
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use battery-aware routing algorithms that use real-time energy data from each car to change routes on the fly. These distributed 

methods let self-driving cars change their routes based on changing traffic conditions, battery levels, and the availability of charging 

stations. They also save time and energy by not running out of power. The system can also find possible risks or failures early and 

take local corrective action by combining edge-level anomaly detection with federated model updates. This makes the system more 

resilient without having to rely on the cloud for every decision [16, 23]. This kind of architecture is a big step towards logistics 

operations that are very independent, environmentally friendly, and safe.  

 This study suggests a federated edge-cloud architecture for self-driving logistics systems to get around the problems with 

centralised logistics and make the most of edge intelligence and federated learning. Large-scale, real-time delivery truck coordination 

is supported by the architecture, which also guarantees operational resilience, energy efficiency, and data privacy.  Our main 

contributions are (i) a tri-layered system that uses federated learning to integrate edge autonomy and cloud orchestration; (ii) a dynamic 

routing algorithm that is battery-aware and optimised for fleets with limited energy; and (iii) distributed anomaly detection 

mechanisms that protect system stability without disclosing raw data.  Simulation scenarios that mimic real-world logistics problems 

are used to assess the suggested architecture, and the results demonstrate notable gains in energy consumption and delivery efficiency 

[5, 18, 27].  This paper's remaining sections are organised as follows:  In Section 2, relevant work and foundational technologies are 

reviewed; in Section 3, the proposed architecture and its components are presented; in Section 4, simulation results and performance 

metrics are discussed; and in Section 5, future extensions, such as blockchain integration and 6G-enabled mobility, are discussed. 

2. RELATED WORK  

2.1 Autonomous Logistics Systems 

In contemporary supply chain and transportation operations, autonomous logistics systems, or ALS, have become a key 

breakthrough. Thanks to fleets of self-driving cars, drones, and infrastructure that can connect to the Internet of Things, these systems 

can handle distribution and coordination with little help from people.  According to research done over the past ten years [6], ALS can 

improve route management, reduce delivery delays, and boost efficiency in crowded urban areas where traditional centralised systems 

are prone to congestion and delays.  The benefits of ALS become even more clear in complicated, fast-moving supply chains where 

speed and flexibility are important [1]. 

 The growth of e-commerce and the need for just-in-time delivery are two of the main things that have led to the rise of ALS.  

Unlike most systems, which need to be monitored and changed by people all the time, ALS can run all the time and adjust to changing 

demand patterns without any human help. Significant gains in cost-effectiveness and system responsiveness have been demonstrated 

by recent case studies and pilot deployments, with fleets of autonomous cars able to react instantly to emergency situations and erratic 

traffic circumstances [13, 15].  These systems' scalability enables businesses to satisfy client demands even during busy times, which 

is now a key component of contemporary logistics plans.  Drone integration for last-mile delivery has been a key component of ALS 

innovation.  Drones provide a high-speed alternative for urgent and time-sensitive deliveries by avoiding traffic on the roads.  Drone 

swarming methods, which involve several UAVs coordinating with one another to maximise delivery coverage and minimise 

redundancy, have been developed by recent research and greatly boost efficiency for short-range logistical jobs [6].  The benefits of 

coordinated drone fleets have been confirmed by a number of smart city pilot projects, which highlight how their deployment can 

lower energy use and environmental effect [20].  However, for data analysis and decision-making, early ALS implementations 

frequently relied heavily on centralised cloud infrastructures.  This method limits autonomous agents' capacity to act autonomously 

during network outages, causes delay, and forms bottlenecks [8].  Concerns regarding data privacy and operational robustness are also 

brought up by the cloud-based approach, especially in systems that must oversee hundreds or thousands of agents at once.  Because 

of these constraints, researchers and industry are investigating more intelligent and distributed architectures that will enable 

autonomous systems to learn and coordinate more efficiently at the edge while preserving global visibility [21]. 

2.2 Edge Computing in Logistics 

Because edge computing moves data processing and analytics closer to the point of data generation, it has become a vital enabler 

for contemporary autonomous logistics systems.  Edge computing enables logistics systems to react faster to environmental changes, 

including demand spikes, weather variations, and route bottlenecks, by decreasing reliance on distant cloud servers [7, 8].  It has been 

demonstrated that having the ability to make decisions locally at the edge greatly lowers communication latency and eases the burden 

on network bandwidth. This is especially useful in large-scale urban deployments where thousands of devices may be sending data at 

once.  Edge nodes, which can be mounted on delivery trucks, drones, and local hubs, can carry out real-time calculations like local 

optimisation, obstacle avoidance, and route recalculation in the context of logistics.  These calculations are essential in time-sensitive 

situations, such avoiding crowded junctions or adjusting to sudden road closures, when milliseconds can impact delivery results [9].  

 System resilience is further increased by spreading compute duties among edge nodes, which enables businesses to continue 

functioning even in the event that network communication to the cloud is disrupted.  Logistics operations can be revolutionised by 

edge intelligence, as evidenced by a number of recent studies.  For example, multi-agent coordination, in which teams of self-driving 

delivery vehicles work together in real-time to choose the best delivery routes and assign duties throughout the network, has been 
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managed using edge computing-based systems [22, 23].  In addition to increasing fleet utilisation, this lowers overall energy 

consumption, which is crucial for electric delivery fleets.  Furthermore, warehouse-to-consumer routing has been optimised and 

demand changes have been predicted using edge-enabled predictive analytics, enabling proactive resource and vehicle allocation.  

Nevertheless, even with these developments, existing edge implementations still have drawbacks when utilised alone.  Fragmented 

learning can result from localised decision-making, in which nodes optimise according to their immediate surroundings but are unable 

to access more comprehensive system knowledge.  Edge computing by itself might not be able to fully utilise the collective intelligence 

that exists across thousands of autonomous devices if there is no way for insights to be shared throughout the network [19, 21].  These 

drawbacks encourage the incorporation of federated learning to enhance edge capabilities and offer a system-wide perspective while 

maintaining the advantages of local computation's low latency. 

 

Figure 2.1: IoT-enabled warehouse management: The flow of inventory data between warehouses, cloud aggregators, ERP 

systems, and visual dashboards. This system ensures real-time synchronization and monitoring of incoming and outgoing inventory. 

2.3  Federated Learning for Transportation and Logistics 
 

Federated learning (FL), a potent machine learning paradigm that allows dispersed devices to work together to train models without 

sharing raw data, has grown in popularity recently.  This is especially helpful for logistics and transportation systems, which produce 

enormous amounts of sensitive data from urban infrastructure, IoT sensors, and driverless cars.  FL makes privacy better and 

communication easier by letting models be trained locally at the edge and then combined every so often to make a global model, 

instead of relying only on cloud servers [10, 11].  The ability to combine local intelligence from hundreds or thousands of devices 

opens the door to logistics networks that are more flexible and can grow.  In logistics and transportation, FL has been used for a 

number of things, such as planning routes together, sensing autonomous vehicles, predicting traffic flow, and finding anomalies.  By 

letting autonomous agents train models locally and only sharing model updates, systems can use community knowledge while keeping 

sensitive raw data, like location traces and operational metrics, decentralised [1, 10, 11].  Many studies have shown that FL is good 

for driverless and connected cars. They show that federated methods make it easier for cars to adapt to local conditions and reduce the 

need for large amounts of centralised data collection [12, 18, 19].  This strategy works especially well for logistics fleets that work in 

a lot of different urban and rural areas, where conditions can be very different from one place to another [21, 23].  Researchers have 

also begun combining FL with reinforcement learning to make distributed intelligence better in logistics platforms and vehicle 

networks [22, 24]. Federated learning has shown promise in helping logistics fleets make decisions that take energy use into account, 

beyond just observation and routing.  Battery-powered self-driving cars and drones can benefit from distributed models that can find 

the best charging schedules, predict how much energy will be used, and change routes based on how much charge they have [3, 4, 5].  

Recent research has also shown how FL can be used to coordinate charging infrastructure so that a lot of cars can get power without 

causing traffic jams at charging stations [16, 23].  These systems can change their strategies to cut down on downtime and make 

batteries last longer by looking at patterns from many different local situations and putting them together in the cloud [18, 24].  This 

energy-focused FL application is now very important for creating logistics systems that are both cheap and good for the environment 

[19, 27]. 

Federated learning can make logistics systems safer and more private by keeping raw data local. This is another big benefit. The 

dangers of disclosing sensitive data, including vehicle positions or operational specifics, are greatly decreased because only model 

parameters are sent throughout the learning phase [10, 21].  To guard against possible model inversion attacks, researchers have also 

investigated incorporating privacy-preserving strategies like safe aggregation and differential privacy into FL frameworks [22, 24].  

These techniques are becoming more and more applicable to big logistics fleets where operations depend on data security and integrity.  

Furthermore, because no single server houses all operational data, FL's decentralised architecture increases resilience and lessens the 

impact of possible intrusions [23, 25].  Federated learning's trust-enhancing qualities make it an especially appealing choice for next-
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generation autonomous transportation networks as logistics systems become more interconnected [12, 26].  Although federated 

learning has already demonstrated promise in resource optimisation, traffic coordination, and autonomous vehicles, the majority of 

current applications are still in the experimental stage and have small scales [18, 21].  Combining these distributed models with real-

time decision-making frameworks that can operate dependably across thousands of diverse devices is still a challenge [23, 24].  Due 

to this constraint, there is growing interest in architectures that combine edge computing and federated learning, laying the groundwork 

for scalable and intelligent autonomous logistics systems [2, 12]. 

 

Figure 2.2: Overview of the proposed tri-layered federated edge-cloud architecture 

 

Figure 2.3: Hierarchical data flow architecture: Sensors, Edge, Coordination, and User Levels in the proposed system for 

autonomous logistics operations. 
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2.4     Integrated Edge-Cloud Architectures 

 

The difficulties of centralised logistics systems have lately been addressed by hybrid edge-cloud designs.  These designs improve 

robustness, lower latency, and facilitate real-time decision-making by sharing intelligence between cloud servers and local edge nodes.  

Without waiting for commands from the cloud, edge nodes installed in cars, drones, or local depots can quickly modify routes, identify 

irregularities, and handle temporary jobs in logistics environments [2, 8, 22].  Long-term optimisations like demand forecasting and 

fleet-wide coordination are made possible by the cloud's simultaneous aggregation of model updates from these nodes [12, 23].  This 

job separation makes large-scale deployments more responsive and consistent around the world.  Combining edge computing and 

federated learning in these designs has shown that autonomous logistics has a lot of potential.  Studies show that these combined 

systems protect privacy by keeping sensitive information on the user's device, which also lowers connection costs and latency [10, 18, 

24].  Local edge intelligence is great for dynamic situations where cloud access can't be guaranteed all the time because it lets 

autonomous agents keep working even when the network goes down.  

 Federated learning also makes sure that insights from many operating locations go into a global model without putting data security 

at risk [11, 21].  These changes point to a move towards smart and decentralised logistics systems that can work on a large scale and 

quickly adapt to changing situations. 

2.5   Identified Research Gaps 

 

 Despite significant advancements in federated learning, edge computing, and autonomous logistics systems, there are still 

significant gaps in their integration.  Many autonomous delivery system solutions are still centralised, which restricts scalability and 

makes them more susceptible to network outages [6, 8].  Similar to this, edge computing deployments have been shown to work in 

isolated pilots, but they frequently don't communicate information throughout a fleet, which leads to intelligence that is fragmented 

[7, 22].  Despite its theoretical strength, federated learning has only been investigated in controlled research settings and has not yet 

been used in the large-scale, real-time scenarios encountered by contemporary logistics providers [10, 12].  The optimisation of 

resources and energy is another gap.  Current research typically focusses on predictive modelling or autonomous vehicle operational 

coordination, but it rarely discusses how distributed intelligence can integrate real-time energy constraints, like battery health and 

charging availability, into scheduling and routing [3, 5, 16].  Moreover, insufficient research incorporates anomaly detection directly 

into these architectures, making systems more vulnerable to errors or cyberattacks that could cause large-scale disruptions in operations 

[21, 23].  A number of significant shortcomings in the current autonomous logistics systems are addressed by the suggested federated 

edge-cloud design.  These research gaps and their accompanying solutions are compiled in Table 2.1, which also emphasises the need 

for a hybrid strategy that combines federated learning with edge computing. 

 These drawbacks emphasise the necessity of a cohesive architecture that incorporates federated learning and edge computing to 

accomplish resilience, global coordination, and real-time decision-making while taking energy-conscious logistics into account.  The 

strategy in this work tries to close these gaps and provide scalable, secure, and effective logistics solutions by offering a federated 

edge-cloud architecture that strikes a balance between local autonomy and centralised optimisation [2, 18, 24]. 

Table 2.1: Key Research Gaps in Autonomous Logistics Systems and Proposed Solutions 

Research Gap Description Proposed Solution 

High Latency in Centralized Systems Cloud-centric models cause delays due to 

remote data processing [6, 8]. 

Edge computing for local, real-time 

decision-making (e.g., route 

adjustments) [7, 18]. 

Poor Scalability in Edge Computing Isolated edge nodes lack global 

coordination, limiting fleet-wide 

optimization [7, 22]. 

Federated edge-cloud architecture for 

distributed learning and global model 

updates [2, 12]. 

Limited Privacy in Data Handling Raw data transfer to cloud servers risks 

breaches and regulatory issues [10]. 

Federated learning to keep data local, 

sharing only model updates [10, 21]. 

Inefficient Energy Management Traditional routing ignores battery 

constraints, leading to downtime [3, 5]. 

Battery-aware dynamic routing to 

optimize energy use and reduce 

consumption [3, 4]. 
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3. PROPOSED ARCHITECTURE 

3.1 System Overview 

 The proposed solution is a federated edge-cloud architecture made specifically to make autonomous logistics systems more 

scalable, reliable, and efficient. The architecture blends the collaborative intelligence of Combining edge computing's low-latency 

processing power with federated learning [2, 8, 22].  Autonomous vehicles, drones, and local depots all have edge nodes that do time-

sensitive calculations and react instantly to shifting operational and road conditions [3, 7, 18].  To enable fleet-wide optimisation 

without jeopardising data privacy, the cloud acts as an orchestrator, integrating model updates from these scattered nodes to get a 

system-wide image [10, 12, 23].  Even in situations with sporadic connectivity and diverse settings, the architecture may operate in 

real time thanks to this dual-layered approach [11, 19, 24].  The necessity to oversee fleets of drones and driverless cars that must 

function in a variety of uncertain conditions is what inspired this architecture.  The suggested structure gives the system the ability to 

act locally when time is of the essence, in contrast to centralised models where all choices are dependent on a distant data centre.  

When unexpected road restrictions occur, for instance, a delivery vehicle can use its onboard intelligence to quickly calculate a 

different route while still receiving periodic updates from the global model pooled in the cloud [7, 18, 21].  Delivery delays are 

decreased, the system as a whole is more resilient to network outages, and federated learning allows lessons learnt in one area of the 

fleet to be shared with others [2, 10, 12].  Crucially, the suggested architecture's design also takes privacy into account by eliminating 

the transfer of raw data; rather, devices exchange model parameters, preserving sensitive operational data inside local nodes [19, 22, 

24]. The suggested framework creates a basis for extensive, intelligent logistics operations by combining local autonomy with 

centralised knowledge sharing.  While the cloud continuously improves a common model for future planning, this balancing 

guarantees that quick decisions may be taken at the network edge [8, 11, 18].  The system's multi-layered structure and the way 

intelligence and data move across the architecture are explained in the ensuing subsections. 

3.2 Architecture Layers 

 Three levels make up the suggested federated edge-cloud architecture: the edge layer, the cloud layer, and the intermediate 

coordination layer.  In order to provide scalable, flexible, and privacy-conscious logistics operations, each of these layers has a unique 

function.  While the coordination layer connects groups of edge nodes within an area to exchange information and settle disputes, the 

edge layer handles instantaneous, on-site decision-making, such as modifying delivery routes or identifying nearby risks [2, 3, 22].  

The cloud layer at the top is the main intelligence centre. It combines model updates to make global optimisation methods [8, 12, 23].  

This layered approach keeps the benefits of global learning while letting information flow up and down. It also makes it possible for 

quick responses at the edge. 

3.2.1  Edge Layer 

 

The edge layer is made up of drones, self-driving cars, and local IoT-enabled devices with processing power. It is the base 

of the architecture. These edge nodes do things that are time-sensitive, like checking battery life, finding problems in their immediate 

area, and changing routes when they come across unexpected obstacles [3].  When cars drive in areas with bad connectivity, they 

can take action without waiting for orders from the cloud because they can process data on their own [7].  Edge intelligence also 

makes context-aware decision-making possible. For example, a delivery drone can use sensor data to respond to sudden changes in 

weather or areas that are off-limits without needing outside help [18].  Also, each edge node helps train the model by learning from 

its own data and then sending only the updated model to higher layers. This is done to protect data privacy [10]. 

3.2.2  Intermediate Coordination Layer 

 

 The intermediate coordination layer connects each edge node to the cloud.  Regional hubs in this layer combine local 

knowledge, deal with problems like delivery routes that cross each other, and get updates from drones and nearby cars [12].  This 

design makes it easier for nodes in the same area to work together while putting less strain on the cloud's communication [21]. 

3.2.3  Cloud Layer 

 

 The cloud layer is at the top of the architecture and is in charge of orchestration and global learning. It creates optimisation 

techniques for the entire system by combining model updates from several regional hubs [8].  These tactics include long-term planning 

techniques that necessitate a comprehensive picture of all operational delivery units, such as fleet scheduling and demand forecasting 

[18].  Without exchanging raw data, the cloud also makes it easier to transmit knowledge between geographical areas, allowing 

operations in one city to profit from lessons learnt in another [10].  The cloud keeps an extensive model that is always changing as 

fresh data comes in from the edge thanks to the combination of these insights. This architecture's tiered design combines the advantages 

of each tier to create a unified and flexible system.  Logistics operations can continue even when connections to the higher levels are 
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unreliable by letting the edge layer make quick, localised decisions.  By controlling resources and traffic patterns within a certain area, 

the intermediate coordination layer—also known as a fog or regional layer—adds a crucial dimension and keeps the cloud from 

becoming overloaded with requests for constant communication [12].  Lastly, by preserving a global viewpoint that facilitates large-

scale optimisation, such as predicted demand models and fleet-wide planning, the cloud layer integrates these dispersed activities [2].  

As orders and updates move downhill to enhance field operations, knowledge from vehicles and drones flows upward thanks to the 

constant interaction between these layers.  This collaborative framework serves as the foundation for data flow and model training 

within the system and is essential for handling the complexity and unpredictability of logistical networks in the real world. The 

suggested federated edge-cloud architecture uses a number of cutting-edge technologies to make it scalable, responsive, and efficient. 

These important technologies, together with their main purposes and contributions to system performance, are compiled in Table 3.1.  

Table 3.1: Key Technologies Enabling the Federated Edge-Cloud Architecture 

Technology 
Primary Function Benefit Relevance to Architecture 

Edge AI Local data processing and 

decision-making 

Reduces latency, enhances 

responsivenes 

Enables real-time routing and 

anomaly detection at edge 

nodes [7, 18]. 

Federated Learning Distributed model training 

without raw data 

Preserves privacy, improves 

scalability 

Supports global model 

updates via cloud while 

keeping data local [10, 21]. 

Battery-Aware Routing Dynamic route optimization 

based on energy 

Reduces energy consumption 

by up to 30% 

Optimizes energy-efficient 

fleet operations [3, 4]. 

Anomaly Detection Real-time monitoring of 

system irregularities 

Enhances resilience, prevents 

disruptions 

Ensures operational stability 

at edge and regional levels 

[18, 23]. 

 

3.3 Data Flow and Model Training 

The three layers of the proposed design make it easy to see how data and models are updated.  Drones and cars on the edge are 

always gathering information from sensors like GPS, cameras, and battery monitors [3].  These raw data streams go through local pre-

processing [7] to make sure that only useful features are used when training models for things like planning routes and predicting 

energy use.  Each edge device makes a set of model updates that show what it has learnt instead of sending sensitive data to the cloud. 

This greatly cuts down on the need for communication and keeps operations private [10].  The intermediate coordination layer puts 

these changes together and sends them to the cloud, where a global model is updated to include information from the whole network 

[2]. 

During the training process, the system goes through cycles that start at the edge.  Any edge device, like a car, drone, or local hub, 

can improve local models with the data it has collected without having to send raw data outside of its borders [11].  After a training 

session, the device makes a small package of model parameters that shows what it has learnt and sends it to the regional coordination 

centre [7].  These hubs work as a middle layer that efficiently captures the range of conditions in a given area by combining local 

updates from multiple devices using federated averaging techniques [21].  After this regional aggregation, only updates for the 

improved model are uploaded to the cloud for global aggregation. This is to make sure that all of the fleet learns from what they learnt 

in different operating situations [10].  Our layered federated learning method lowers the chance of bandwidth congestion while still 

making models that work in a wide range of situations by finding a balance between global accuracy and communication efficiency 

[2].  When the global model is updated and sent back to regional hubs and then to individual devices, the cycle is complete. This cycle 

keeps improving decision-making at all levels of architecture [12].  One big advantage is that this organised data flow naturally protects 

privacy while allowing for flexible, real-time responses.  Only model updates, not raw operational data, get to the edge nodes [10]. 

This means that sensitive data like position records or sensor images never leave the vehicles or drones.  Using this method makes it 

much less likely that there will be big data breaches.  Also, the system can handle bad network conditions because it relies on localised 

model training. This means that devices can keep learning and making decisions even when the connection is bad [18].  Because of 

the combination of distributed learning and synchronised model sharing [8], the architecture can quickly adapt to unexpected events 

like traffic jams, extra delivery orders, or environmental threats.  The shared global model gets more accurate over time as it takes into 

account experiences from all parts of the logistics network [2, 12]. 



International Journal of Engineering and Information Systems (IJEAIS) 

ISSN: 2643-640X 

Vol. 9 Issue 8 August - 2025, Pages: 50-62 

www.ijeais.org/ijeais 

57 

This cyclical flow of data and model updates in the suggested design combines the benefits of global coordination with local 

autonomy.  Because of this, the system keeps strict privacy limits while getting more accurate and responsive with each training cycle 

[7, 11].  Thanks to this foundation, the functional modules described in the next paragraph can work well and reliably in a wide range 

of logistics situations. 

3.4 Key Functional Modules 

The suggested architecture will only work if it has a set of specialised modules that work across multiple system tiers.  

These modules handle things like finding anomalies, scheduling with energy in mind, dynamic routing, and learning that protects 

privacy [3].  Each module works at the level that works best for it.  For instance, long-term optimisation modules use information 

from the cloud, while routing and hazard detection modules mostly work at the edge, where they can make decisions right away [8].  

When put together, these parts create an ecosystem that lets people make quick decisions when they need to and improve slowly 

through working together with people from other countries [2, 18].  The dynamic routing and scheduling module is a key part of the 

suggested architecture. It lets cars and drones quickly adapt to changes in the logistical environment.  The module at the edge 

constantly checks sensor and local map data [7] to find delays, traffic jams, or unexpected obstacles.  It makes sure that deliveries 

keep going by recalculating the best routes when there are problems, without having to wait for input from the cloud [3].  The module 

also uses data from regional hubs to help cars in the same area plan their trips and avoid making unnecessary trips [12].  Over time, 

the cloud improves a global model of routing techniques that can predict future traffic patterns and better allocate resources with the 

help of aggregated updates from this module [2].  This multi-level decision process makes logistical operations faster and more 

reliable. It is much better than the static planning found in centralised systems [18]. 

The suggested architecture includes an energy-aware management module that takes care of energy efficiency, which is 

also very important.  This module gets information about power use, charging station availability, and battery health directly from 

each car and drone [3].  It changes delivery routes and assignments based on this information to stay within energy limits, which 

lowers the chance of service interruptions caused by low battery levels [4].  By using aggregated energy data, coordination hubs can 

manage the charging schedules for different vehicles at the regional level. This cuts down on traffic at charging stations and spreads 

the load more evenly [16].  The system uses predictive models that look at past patterns of energy use to plan for large-scale 

operations and seasonal changes on the cloud side [2].  This all-encompassing approach to energy management supports the goal of 

creating a sustainable and effective autonomous logistics network [18]. 

 The architecture has a multi-layered anomaly detection and resilience module to make sure that operations are safe and 

stable.  This module at the edge keeps an eye on sensor readings and vehicle performance all the time to find problems like batteries 

that drain too quickly, communication problems, or mechanical issues [18].  The system can fix a local problem right away by 

rerouting jobs or isolating the affected node, without having to wait for commands from the cloud [7].  Regional hubs make this 

feature even better by being able to spot trends among multiple cars in the same area. They also help identify coordinated 

malfunctions or environmental risks that affect multiple devices at the same time [21].  Cloud-based aggregated anomaly data give 

fleet managers useful information that can help them make safety rules better and predict possible dangers [10].  This tiered detection 

method makes autonomous logistics networks much more durable when things go wrong in the real world [12]. 

When put together, these modules make a coordinated system that helps with independent logistical operations by 

coordinating energy management, routing, and resilience measures.  By splitting these tasks across three layers, the design makes 

sure that the edge can respond quickly while also getting better all the time through cloud-based aggregated learning [2, 12]. 

3.5 Advantages of the Proposed Architecture 

The proposed federated edge-cloud architecture has many benefits that can help with problems that keep coming up in autonomous 

logistics.  By combining collaborative model training with distributed computing, the approach makes real-time operations more 

responsive and speeds up decision-making [7].  Also, it protects data privacy by keeping private information, like delivery locations 

and sensor recordings, on local devices instead of centralised servers [10].  This structure lets fleet operations see things from a global 

point of view, which makes it easy to adapt to changes in traffic, road conditions, or the environment [2, 12].  One of the best things 

about the suggested architecture is that it can grow with the logistics network.  Adding more cars or drones to a traditional centralised 

system can make it work much worse by putting more strain on the central servers and slowing down communication [8].  With this 

federated edge-cloud approach, on the other hand, computing is split up into different levels, so each edge device can process its own 

data and send model updates instead of raw data [18].  This setup makes sure that the network will stay stable and responsive even 

when there are thousands of devices connected to it.  Also, the layered structure makes fault tolerance even stronger.  When 

communication with higher layers is lost, autonomous cars and drones can still work because they can make decisions on their own at 

the edge [7].  Intermediary hubs can help fleets of vehicles work together in the same way, so that the operations of an entire region 

don't stop because of one point of failure [21].  These traits help make a system strong enough to work in a variety of real-world 

situations that can't be predicted [2]. 

  Another big benefit is how this architecture combines energy efficiency and sustainability into big logistics operations.  Using 

distributed energy-aware modules [3], the system keeps an eye on the power usage and battery health of each drone and self-driving 
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car all the time.  Regional hubs can manage charging schedules so that some stations don't get too busy, but the edge uses this 

information to create paths that use the least amount of energy [4].  Long-term study of these energy trends helps with predictive 

planning at the cloud layer, which predicts when energy use will be highest and makes sure resources are used as efficiently as possible 

[16].  This makes the whole fleet run more sustainably, with fewer problems and longer battery life [18].  This combination of 

optimising local energy use and predicting global trends encourages greener logistics practices in response to the growing demand for 

environmentally friendly supply chain solutions [5].  When dealing with private information, autonomous logistics systems need to 

put security and privacy first.  Table 3.2 lists the main security risks in the federated edge-cloud architecture and the ways that these 

risks are reduced to ensure safe and private operations. 

 To sum up, the proposed architecture brings together sustainability, scalability, resilience, and responsiveness into one system.  

These strengths work together to make autonomous logistics networks better all the time while still working reliably in the real world 

[2, 7, 12].  The next section shows how the experimental setup and evaluation were used to test this architecture's performance. 

 

 

 

 

 

 

Table 3.2: Security Threats and Mitigation Strategies in Federated Edge-Cloud Systems 

Security Threat Description Mitigation Strategy Relevance to Architecture 

Data Breaches Unauthorized access to 

sensitive data (e.g., vehicle 

locations) during transmission 

[10]. 

Secure communication 

protocols and encryption to 

safeguard data while it's in 

transit [21]. 

Ensures secure data exchange 

between edge and cloud [21]. 

Model Inversion Attacks Attackers reconstruct raw data 

from model updates [22]. 

Data reconstruction is 

prevented by using 

differential privacy to 

introduce noise during model 

updates [10, 24]. 

Preserves privacy in federated 

learning [10]. 

Adversarial Attacks Malicious nodes send 

corrupted model updates, 

degrading global model 

accuracy [12]. 

Secure aggregation to validate 

and combine updates, filtering 

malicious inputs [22]. 

Maintains integrity of global 

model updates [12, 22]. 

Communication Interception Eavesdropping on model 

updates during edge-cloud 

communication [21]. 

Homomorphic encryption to 

enable computation on 

encrypted data [24]. 

Protects model updates in 

transit [24]. 

 

4. DISCUSSION AND FUTURE DIRECTIONS  

4.1 Discussion 

The proposed federated edge-cloud architecture is a new way to deal with the problems that modern autonomous logistics systems 

have.  Comparing the results of similar research with the structure of our architecture shows that combining hierarchical processing 

with distributed learning can greatly improve operational efficiency [2].  As shown by many previous studies [7], decentralised 

processing at the edge lowers latency and makes self-driving cars more responsive to their surroundings.  Federated learning, on the 

other hand, makes sure that knowledge is shared across the network without putting privacy at risk [10].  These results support the 

idea that a hybrid architecture like this one would work better than traditional centralised methods when it comes to responsiveness, 

scalability, and adaptability [12]. 

A federated edge-cloud architecture will have a big effect on how logistics networks are planned and run.  Integrating intelligence 

at the edge lets businesses make decisions locally. This cuts down on the time it takes to respond to things like equipment breakdowns, 

sudden spikes in demand, or road closures by a lot [7].  This increased responsiveness makes service more reliable, which is important 
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in fields where customers want faster and more predictable delivery.  The architecture actually makes sure that operations continue at 

a high level by allowing fleets of drones and self-driving cars to work even when there isn't much or any cloud connectivity [3].  In 

addition to these immediate benefits, logistics operators can find inefficiencies, plan their resources more strategically over time, and 

look at performance trends across thousands of trucks with the help of global coordination that federated learning makes possible [2].  

These skills are especially important for businesses that manage complex networks across multiple cities or around the world because 

they help make decision-making processes more consistent while still taking into account the unique needs of each local area [18].  

Another important effect is cost-effectiveness: decentralising processing workloads means that less cloud-based computation is needed 

all the time, which lowers bandwidth use and encourages fairer use of computer resources [12].  Also, this structure naturally helps 

with legal compliance when it comes to data protection because sensitive data like location traces and sensor images are stored locally 

instead of being sent to central servers [10].  This system is a good candidate for widespread use in modern smart logistics ecosystems 

because companies that use this kind of architecture can improve service quality, lower costs, and strengthen compliance all at the 

same time. 

 

Figure 4.1: Federated learning workflow between mobile/edge devices and cloud aggregator. Devices accept work requests, 

train local models, upload results, and participate in global model updates in a privacy-preserving manner. 

The advantages of a federated edge-cloud architecture are obvious, but before these systems can be used extensively, there are 

several problems that must be fixed.  The initial infrastructure expense, which involves establishing regional coordination hubs and 

mounting computing units on cars, is one of the main obstacles [21].  Interoperability is another challenge because logistics networks 

sometimes combine hardware and software from several manufacturers, This may make communication between devices and layers 

more challenging [18]. There are dangers associated with model update security and governance as well; if a hostile node delivers 

tainted updates, the accuracy of the global model may suffer [12]. Furthermore, synchronising model updates across numerous 

heterogeneous devices becomes more difficult with federated learning, particularly when the network is unreliable [2].  Last but not 

least, before these technologies can be widely implemented, operational norms including adherence to privacy laws and the moral use 

of data need to be standardised [10]. 

 All things considered, the conversation shows that the suggested architecture may significantly increase the responsiveness, 

resilience, and efficiency of autonomous logistics networks. However, overcoming obstacles pertaining to cost, interoperability, and 

governance is necessary to actually realise these benefits. To fully utilise federated edge-cloud systems for upcoming logistics 

operations, these obstacles must be removed [2, 7, 10].  

4.2 Future Directions  

Opportunities to expand and improve the suggested federated edge-cloud architecture are presented by a number of new 

technologies.  Integrating blockchain technology with federated learning to produce unchangeable records of model updates and 

guarantee that only reliable nodes add to the global model is one exciting topic [21]. Simultaneously, the introduction of 6G networks 

is anticipated to offer extremely dependable low-latency communication, greatly enhancing synchronisation between edge devices 

and cloud servers, especially for logistics activities that require quick response times [12].  The creation of digital twins, which can 

replicate real-world logistics systems in virtual settings to model routes, forecast failures, and assess tactics before implementing them 
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in actual situations, is another intriguing field [27].  Future logistics networks may be able to achieve previously unheard-of levels of 

coordination and flexibility when these technologies are paired with federated edge-cloud systems [18]. 

 Applying this architecture to multi-modal logistics systems—where trucks, drones, railroads, and even marine vehicles 

collaborate—is a logical next step.  For commodities to move effectively across regional and worldwide networks, future autonomous 

supply chains will rely on the smooth integration of these many modes of transportation [5].  Since each mode can make decisions 

locally and still benefit from global optimisation through federated learning, the layered architecture suggested in this study is 

especially well-suited to accommodate such complex systems [2].  Furthermore, the realisation of these multi-modal ecosystems would 

necessitate cooperation between sectors like manufacturing, retail, and urban planning, necessitating platforms that can facilitate data 

sharing and interoperability without sacrificing privacy [12].  Logistics firms will be able to move from single-mode planning to a 

comprehensive strategy where items go through an adaptive, networked system thanks to these developments.  Increasing the federated 

edge-cloud systems' scalability to accommodate much bigger and more intricate networks is another avenue for future research.  Model 

synchronisation becomes increasingly difficult as the number of autonomous devices increases, necessitating adaptive communication 

techniques to maintain timely and accurate updates [18].  Mechanisms for asynchronous model aggregation, which allow nodes with 

varying connectivity circumstances to contribute to learning without waiting for all devices to be online simultaneously, are probably 

going to be incorporated into future systems [21].  This will be supplemented by continuous learning, which does not rely on predefined 

training cycles but instead allows the system to improve its models as new data comes in [23].  These features will let global logistics 

platforms adapt to long-term changes in things like how people shop, how cities are built, and how demand changes with the seasons.  

Ethics and sustainability will also have a big impact on the directions of future research.  Combining federated learning with green 

computing methods can help lower the energy footprint of large-scale distributed systems [4].  Adding explainable AI methods to the 

architecture can also make sure that the actions of autonomous agents are clear, allowing human operators to check results and follow 

the law [22].  People are starting to realise that their trust in AI-powered logistics systems will depend on more than just how well 

they work. They will also need to be able to handle privacy, fairness, and the environment [10]. Therefore, in order to make sure that 

these systems are in line with societal and environmental objectives, future work must incorporate frameworks for monitoring and 

auditing them.  

 Developing cross-industry data ecosystems that enable manufacturers, city authorities, and other logistics service providers to 

work together via federated edge-cloud infrastructures is one exciting avenue for future study.  By sharing model updates via a secure, 

federated network, several stakeholders could obtain insights from a much bigger dataset without revealing sensitive information, as 

opposed to each organisation maintaining separate models [18].  City-level optimisations, in which delivery fleets from various 

suppliers plan their routes to avoid traffic jams and more effectively share charging infrastructure, may be made possible by such 

ecosystems.  Additionally, this strategy would cut down on unnecessary travel and energy use, which would help businesses and 

communities alike.  New guidelines for compatible federated learning protocols and reward systems would have to be created in order 

to make such ecosystems feasible [12].  Future systems must be more resilient to disturbances brought on by malfunctions, natural 

catastrophes, or cyberattacks as logistics networks get bigger and more sophisticated.  In order to share local knowledge and assist one 

another in completing tasks during connectivity outages, autonomous vehicles or drones might dynamically establish ad hoc clusters. 

This is one area of research that focusses on building collaboration mechanisms among edge devices [21].  Peer-to-peer federated 

learning of this kind has the potential to build self-healing networks that carry on even in the event that certain nodes or communication 

channels malfunction [7].  In addition to resilience, autonomous collaboration would allow for specialised roles in the fleet: certain 

devices may be responsible for gathering environmental data, while others serve as coordinators, temporarily taking over decision-

making duties in the event that central coordination is not accessible [2].  Logistics operations would be much more resilient and 

flexible in unstable, real-world settings with this capabilities.  The close integration of autonomous logistics systems with intelligent 

urban infrastructure is another avenue with a lot of promise.  In order to supply logistics networks with useful data, smart cities are 

progressively implementing sensors, intelligent road systems, and connected traffic lights [5].  Autonomous fleets can improve their 

route planning, prevent traffic jams before they arise, and handle deliveries more precisely by incorporating these infrastructure-

generated datasets into federated edge-cloud systems.  In order to reduce conflicts and increase efficiency, such integration would also 

enable anticipatory coordination with other city services, such emergency vehicles or public transportation [18].  For city services and 

private logistics providers to work together seamlessly, future designs must prioritise secure communication protocols and real-time 

APIs [23].  In the future, logistics networks will not be standalone systems functioning independently, but rather an integral component 

of the smart city ecosystem.  
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Figure 4.2 : Proposed data protection and security architecture integrating mobile agents, cloud infrastructure, and network 

applications to support trusted, decentralized logistics environments. 

In conclusion, federated edge-cloud logistics architectures will progress from controlled pilot deployments to large-scale, multi-

modal, and ecologically responsible systems over the course of the next ten years.  These technologies can turn the logistics sector 

into a safe, flexible, and sustainable ecosystem by fusing the distributed intelligence described in this work with developments in 6G, 

blockchain, digital twins, and explainable AI [2, 12, 27].  This concept will lay the groundwork for the upcoming generation of 

autonomous logistics platforms and spur continuous innovation.  The discussion's collective observations and the suggested research 

avenues demonstrate how federated edge-cloud systems have the potential to develop into a key technology for the logistics sector.  

The next step is to test these concepts through cross-industry collaboration and real-world deployments, even though the current work 

provides the architectural principles.  The study's primary contributions are outlined in the part that follows, along with how these 

conclusions can direct future advancements in autonomous logistics. 

5. CONCLUSION  

 This article introduced a federated edge-cloud architecture to help fix the problems of scalability, reactivity, and privacy that 

modern autonomous logistics systems have.  The design improves global coordination and lets people make decisions in real time by 

combining collaborative learning across a multi-layered network with local intelligence at the edge.  The proposed framework has 

specialised modules for dynamic routing, energy management, and robustness, which means that fleets of self-driving cars and drones 

can work well even when their surroundings change unexpectedly [2, 7].  The conversation made it clear that decentralisation greatly 

lowers latency, improves data security, and increases fault tolerance compared to traditional centralised logistics methods [3].  

Federated learning lets fleets share knowledge without putting important operational data at risk. This means that systems can adapt 

to changing traffic patterns, energy needs, and other logistical challenges [10, 18].  When used together, these features could make 

regional and urban distribution networks smarter, more adaptable, and more environmentally friendly. Even though there are still 

technical problems to be solved, the proposed architecture sets the stage for the next generation of smart logistics networks. These 

systems will advance from conceptual ideas to real-world implementations as enabling technologies like digital twins, blockchain, 

and 6G connectivity develop, improving sustainability, resilience, and efficiency [12, 21].  Large-scale validation, industry-wide 

interoperability, and the incorporation of cutting-edge AI models for local and global decision-making will be the main areas of future 

research. 
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