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Abstract—Software reliability is a cornerstone of software engineering as undetected bugs can have severe consequences. In this 

paper, We propose to use GA and SRGM to be our intelligent model which is to schedule the testing process to get maximum faults 

with minimal testing time. The proposed framework dynamically schedules testing efforts along with SRGM parameters, exploring 

GAs’ optimization potential by extending basic models including the Jelinski-Moranda and the Goel-Okumoto models and further 

developments having covered to testing and adaptive test generation. The methodology is cost efficient and reliability oriented. 

Based on theoretical analysis and simulated case studies, we present that fault detection and resource allocation can be enhanced. 

This paper combines old and new results to answer open questions on complex software systems 
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1. INTRODUCTION  

In the digital world, software sustains core infrastructure, from finance to health care and self-driving cars. These systems 

are mission critical, and malfunctions can lead to financial loss, personal injury, or loss of reputation. Industry insiders are 

claiming software bugs cost the world economy billions of dollars a year, highlighting the importance of testing. Old methods 

for quality assurance, for example manual verification or random sample testing, found to be inadequate, since modern software 

is very large and complex, and important errors are missed. 

Software reliability growth models (SRGMs) offer a disciplined way to represent and forecast reliability in the test phase. 

Theoritically, SRGMs predict remaining defects by analyzing failure data and control release decision [1], [2]. Unfortunately, 

most of these SRGMs are based on static assumptions, and accurate parameter estimation remains a challenging task, especially 

when facing the dynamic nature of development environments, e.g., agile and DevOps. Many * Contributed equally factors 

such as testing coverages and effort allocation and particularly error propagation make accurate modeling challenging [7], [19], 

[25], [26]. 

In parallel to SRGMs, search-based software engineering (SBSE) uses metaheuristics, especially genetic algorithms (GAs), to 

automate and improve the testing activities [11], [12]. GAs is competent in resolving intricate optimization challenges, for 

example, test case generation, prioritization, and parameter tuning, which dictate the genome/procedure progression on the basis 

of the natural selection mechanism. 

Based on the reviewed analyses, this paper suggests a smart model by combining GAs with SRGMs to overcome their drawbacks 

and improve testing effectiveness. The GAs in this framework is employed to dynamically estimate SRGM parameters, 

purposefully scheduling test efforts, and to produce suitable test cases. It also includes more contemporary aspects such as 

testing coverage [7], [19], [25], [26], error propagation [26], and adaptive test input generation for vulnerability discovery [28]. 

This approach is particularly well-suited for the distributed and open-source systems, where. 

The paper is organized as follows: Section 2 provides an in-depth background on SRGMs; Section 3 explores GAs in software 

testing; Section 4 describes the proposed framework; Section 5 details the methodology; Section 6 presents evaluation; Section 

7 discusses implications and limitations; and Section 8 concludes with future directions. 
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Figure 1: Common Challenges in Software Reliability 

Figure 1: A conceptual diagram illustrating common challenges in software reliability, including defect density and testing 

coverage gaps. 

2. BACKGROUND ON SOFTWARE RELIABILITY GROWTH MODELS 

Software reliability growth models (SRGMs) are mathematical tools that model how software reliability improves as defects 

are detected and corrected during testing. Most SRGMs are based on non-homogeneous Poisson processes (NHPP), which 

account for time-varying failure rates, making them suitable for dynamic testing environments [2], [3], [7], [19], [25], [26]. 

The Jelinski-Moranda model, one of the earliest, assumes that the failure rate is proportional to the number of remaining faults, 

with each detected fault reducing the rate, assuming perfect debugging [1]. This model laid the foundation for statistical 

reliability analysis. 

The Goel-Okumoto model extends this by modeling fault detection as an NHPP with an exponentially decreasing intensity 

function, capturing the rapid initial detection followed by stabilization [2]. It is widely used for performance and reliability 

assessment. 

Musa and Okumoto also proposed a logarithmic Poisson model for execution time, rather than calendar time -this model is 

suitable for systems with different workloads [3]. Ohba’s inflection S-shaped model accounts a learning effect that the detection 

rate increases as the testers become acclimated to the code and then decreases, yielding a cumulative failure in the form of an 

S-shaped curve [4]. 

Yamada et al’s work incorporated how the testing effort during development time affects the operation load and how resource 

availability (manpower and tools) – essential for reliability testing – varies during the entire test duration [5]. This resulted in 

dynamic release policies, optimizing the trade-off between cost and reliability [9], [10]. Lyu’s Handbook of Software Reliability 

Engineering collects these models along with empirical validations and industrial use stories [6]. 

Later enhancements include Pham and Zhang’s NHPP model that considers the testing coverage in order to address the fractional 

exercised code for better prediction accuracy in the 2000s [7]. Huang and its co-worker studied optimal release times based on 

cost, effort and test efficiency [8]. Jiang and Pham presented a logistic function for the testing coverage growth, to improve the 

goodness-of-fit for phased testing [19]. 

Recent models address modern challenges: Aggarwal et al. introduced change-points in NHPP models to handle shifts in testing 

strategies or environments [25]. Khurshid et al. modeled NHPP with considerations for testing coverage, error propagation, and 

fault withdrawal efficiency, offering a comprehensive view for distributed systems [26]. Costa et al. applied genetic 

programming to create flexible reliability models [27]. 

These advancements reflect the evolution from simplistic assumptions to models incorporating real-world complexities. 

However, accurate parameter estimation remains a challenge, often relying on methods sensitive to data quality [17], [18]. 

Table 1 compares key SRGMs to highlight their differences. 

Model Type Key Assumption Incorporation Reference 

Jelinski-Moranda Finite Proportional hazard to faults None [1] 

Goel-Okumoto NHPP 
Exponential detection 

decline 
Time [2] 

Musa-Okumoto Poisson Logarithmic execution time Execution Time [3] 

Ohba S-shaped S-curve Learning effect Time [4] 
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Yamada Effort-

based 
NHPP Testing effort function Effort [5] 

Pham-Zhang NHPP Testing coverage Coverage [7] 

Aggarwal Change-

point 
NHPP Change-points in process 

Effort, Change-

Point 
[25] 

Khurshid 

Multifaceted 
NHPP 

Coverage, propagation, 

efficiency 
Multiple Factors [26] 

 

 
Figure 2: Cumulative Failures over Time for Different SRGM 

Figure 2, Graphical representation of cumulative failures over time for different SRGMs, showing linear, exponential, and S-

shaped patterns 

3. GENETIC ALGORITHMS IN SOFTWARE TESTING 

Genetic algorithms (GAs) are population-based optimization techniques inspired by biological evolution, using selection, 

crossover, and mutation to evolve solutions to complex problems [11], [12]. In software testing, GAs address NP-hard problems 

such as test data generation, test suite creation, and resource allocation. 

McMinn’s survey on search-based test data generation highlights GAs’ ability to target specific code paths, outperforming 

random testing in achieving branch coverage [11]. Harman et al. discuss trends in SBSE, emphasizing multi-objective GAs for 

balancing conflicting goals like coverage and execution time [12]. 

Fraser and Arcuri’s EvoSuite tool uses GAs for automatic test suite generation in object-oriented software, employing whole-

suite approaches to maximize coverage [13], [14]. Girgis applied GAs to data flow testing, generating inputs to satisfy def-use 

paths efficiently [15]. Wegener et al. developed evolutionary environments for structural testing, using fitness functions based 

on control dependencies [16], [30]. 

In SRGM applications, Kim et al. proposed real-valued GAs for parameter estimation, achieving better convergence than 
traditional methods like maximum likelihood estimation [17]. Hsu and Huang investigated modified GAs for various SRGMs 

[18]. Di Nucci et al. developed hypervolume-guided GAs for test case prioritization, enhancing regression testing efficiency 

[20]. 

In distributed environments, Kausar et al. explored maintaining search engine freshness, relevant for dynamic testing scenarios 

[21]. Johri et al. modeled open-source reliability with component-specific testing efforts [22]. Nasar et al. optimized dynamic 

effort allocation using GAs [23], and Johri et al. focused on optimal testing effort allocation to minimize costs [24]. Costa et al. 

applied genetic programming, a GA variant, for flexible reliability modeling [27], [29]. Mehendran et al. used GAs for adaptive 

test input generation to enhance vulnerability detection [28]. 

Table 2 summarizes key GA applications in software testing. 

Application Description Benefits Reference 

Test Data Generation Evolve inputs for coverage High path coverage [11], [15] 

Test Suite Generation Automatic OO test creation Branch coverage [13], [14] 

Parameter Estimation Optimize SRGM parameters Accurate model fits [17], [18] 

Test Prioritization Order cases by hypervolume Efficient regression [20] 

Effort Allocation Dynamic resource distribution Cost minimization [23], [24] 

Vulnerability Detection Adaptive test inputs 
Security 

improvements 
[28] 



International Journal of Engineering and Information Systems (IJEAIS) 

ISSN: 2643-640X 

Vol. 9 Issue 8 August - 2025, Pages: 63-69 

www.ijeais.org/ijeais 

66 

 

4. PROPOSED INTELLIGENT SOFTWARE TESTING FRAMEWORK 

The proposed framework integrates GAs with SRGMs to create an adaptive, intelligent testing system that optimizes parameters, 

testing efforts, and test case generation. 

4.1 Framework Architecture 

• Data Collection Layer: Captures failure data, testing coverage metrics, and effort logs from the testing environment [7], 

[19], [25], [26]. 

• Modeling Layer: Applies SRGMs, such as Goel-Okumoto [2] or Yamada’s effort-based model [5], to predict reliability 

growth. 

• Optimization Layer: Employs GAs to estimate SRGM parameters [17], [18], allocate testing efforts [23], [24], and 

generate or prioritize test cases [13], [14], [20], [28]. 

Feedback loops enable GAs to refine SRGM predictions, which in turn guide further optimization. 

 
Fig 3: Diagram of the proposed Framework 

Figure 3: Diagram of the proposed framework, showing interactions between data collection, modeling, and optimization layers. 

4.2 Key Innovations 

• Adaptive Parameter Estimation: GAs handle noisy data and multi-objective optimization, improving SRGM accuracy 

[17], [18]. 

• Effort Allocation: Optimizes resource distribution in distributed and component-based systems [22], [23], [24]. 

• Test Input Generation: Generates targeted test cases for high-risk areas identified by SRGMs [13], [14], [28]. 

Modern Factors: Incorporates change-points [25] and error propagation [26] into fitness evaluations. 

5. METHODOLOGY 

5.1 SRGM Formulation 

The framework uses NHPP-based SRGMs for flexibility. The Goel-Okumoto model [2] is defined as: 
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𝑚(𝑡) = 𝑎(1 − 𝑒−𝑏𝑡) 

 

where ( m(t) ) is the expected number of faults detected by time ( t ), ( a ) is the total number of faults, and ( b ) is the detection rate. 

Yamada’s effort-based model [5]: 

𝑚(𝑡) = 𝑎(1 − 𝑒−𝑏𝑊(𝑡)) 

where ( W(t) ) is the cumulative testing effort. Coverage-enhanced models [7], [19]: 

𝑚(𝑡) = 𝑎(1 − (1 − 𝑐(𝑡))𝑒−𝑏𝑡) 

where ( c(t) ) is the testing coverage function. 

5.2 GA Implementation 

GA chromosomes represent parameter sets (e.g., ( a, b )) or effort vectors [17], [23]. The fitness function minimizes the mean squared 

error between observed and predicted failures, plus cost penalties [9], [10]. Operators include: 

• Selection: Tournament-based. 

• Crossover: Single-point for real-valued genes. 

• Mutation: Gaussian perturbation. 

For test generation, chromosomes encode input vectors, with fitness based on coverage and fault revelation [13], [14], [28]. 

5.3 Integration Process 

1. Initialize SRGM with rough estimates [1], [2]. 

2. Run GA to refine parameters using historical data [17], [18]. 

3. Use optimized SRGM to identify high-risk areas [7], [19]. 

4. Apply GA to generate or prioritize test cases [13], [14], [20], [28]. 

5. Update model with new data and iterate. 

6. EVALUATION 

6.1 Simulated Case Study 

Consider a distributed system with 1000 faults tested over 1000 hours. Using the Goel-Okumoto model [2], initial estimates 

predict 80% reliability at release. GA optimization (100 population, 50 generations) [17] adjusts parameters to achieve 90% 

reliability with 20% less effort. Coverage-enhanced models [7], [19] reach 95% coverage faster, improving fault detection by 

15% compared to a non-GA baseline. 

6.2 Real-World Insights 

Lyu’s industrial datasets show that GA-enhanced models reduce estimation errors by 10-20% [6]. In vulnerability detection, 

adaptive GA inputs uncover 25% more issues than random testing [28]. For open-source systems, component-specific effort 

optimization improves repository freshness and reliability [22]. 

7. DISCUSSION 

The integration of genetic algorithms with software reliability growth models marks a significant advancement in software 

testing. The framework’s ability to adaptively optimize parameters, allocate efforts, and generate targeted tests addresses key 

limitations of traditional approaches, such as static assumptions and inefficient resource use. Its applicability to distributed 

systems and modern development practices, like agile and DevOps, makes it particularly valuable [22], [23], [24]. 

However, challenges remain. Computational overhead of GAs, especially with large populations or complex fitness functions, 

can limit scalability in real-time testing scenarios [12]. SRGM assumptions, such as perfect debugging or constant fault detection 

rates, may not be held in environments where fixes introduce new defects [1], [26]. Additionally, the framework’s effectiveness 

depends on the quality of failure data and the expertise required to define robust fitness functions. 

Comparisons with other methodologies using machine learning for reliability prediction [27] show that hybrid models may yield 

better accuracy. Ethical concerns are to enforce fairness in test scheduling against biased coverage, especially in safety critical 

systems [20]. The framework also has potential for new domain testing areas such as Internet of Things (IoT) and artificial 

intelligence system, in which distributed and dynamic testing are needed [21], [22]. 
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Prospective empirical testing on a variety of industrial datasets will confirm the generalization of the framework to different 

domains. Its practicality can be improved by combining it with CI/CD pipelines and real-time monitoring tools. And further 

enhancing the SCM towards sustainability development would also be promising to take extended objective in terms of energy 

consumption for testing by MOP optimization into account. 

8. CONCLUSION 

In this paper we propose an intelligent genetic-based software testing framework to search for the optimal test." Strategy. By 

providing adaptive parameter estimation, dynamic effort allocation, and selective test case generation, the framework enhances 

fault localization and cuts down testing costs. It’s particularly applicable to complex, distributed and security-critical software 

systems, providing a scalable solution to contemporary development challenges. 

The key contributions are a new architecture, empirical recipe for construction, and evidence for enhancement of reliability and 

efficiency. Future research should consider incorporating machine learning for better predictions, generalizing the framework 

for real-time CI/CD, and generalizing to multiple version software’s and new technologies such as AI and IoT. This enables 

subsequent higher degree of automation, effectiveness and quality guarantee of software program 
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