International Journal of Academic Engineering Research (IJAER)
ISSN: 2643-9085
Vol. 9 Issue 9 September - 2025, Pages: 43-48

Rubric Design for Grading Programming Assignments: Ensuring
Objectivity

Usmonov Maxsud Tulqin o‘g’li

Master's student at the National University of Uzbekistan
Email: maqsudu32@gmail.com
Phone: +998919471340
ORCID: https://orcid.org/0000-0001-9997-6617

ABSTRACT: Grading programming assignments can be a complex process, often subject to biases in interpretation and inconsistent
criteria. Designing a clear, well-structured rubric offers a solution by standardizing assessment benchmarks and enhancing grading
objectivity. This article examines the principles behind rubric creation for programming tasks, drawing upon research in computer
science education, instructional design, and assessment theory. It explores the balance between evaluating code correctness,
efficiency, style, documentation, and higher-order thinking skills such as algorithmic design and creativity.

KEY WORDS: Rubrics; Programming Assignments; Objectivity; Grading Criteria; Assessment; Computer Science Education;
Instructional Design.

INTRODUCTION

The demand for robust computer science education has grown dramatically, reflecting the centrality of coding skills in the
modern workforce [1]. Within academic programs, programming assignments serve as a cornerstone of practical learning, enabling
students to apply theoretical concepts to real-world tasks [2]. However, grading these assignments can be fraught with complexity.
Traditional grading methods may rely on subjective judgments about code readability, algorithm efficiency, or debugging techniques
[3]. This subjectivity can lead to inconsistencies, disputes, and a lack of transparency in the feedback loop [4]. Consequently,
educators face the challenge of developing tools and frameworks that ensure fairness and clarity in assessing student work.

Rubrics—structured assessment guides—offer a potential solution. By breaking down assignments into specific criteria,
each with defined performance levels, rubrics can help both instructors and learners navigate the multidimensional nature of
programming tasks [5]. Rather than leaving evaluations to ambiguous “gut feelings,” rubrics convert the process into a set of
consistent, transparent standards [6]. This approach aligns with the broader movement in higher education toward evidence-based
assessment, which emphasizes validity, reliability, and alignment with learning objectives [7].

In the context of programming assignments, rubric design demands particular attention to the diverse skill sets involved—
logical reasoning, code syntax, problem-solving strategies, collaboration, and creativity [8]. This article delves into the conceptual
underpinnings, practical guidelines, and empirical evidence surrounding rubric creation for programming coursework. It also
addresses the potential pitfalls, such as over-standardization or insufficient adaptability to new frameworks, and underscores how
thoughtful rubric design can promote student engagement, reduce grading bias, and enhance educational outcomes [9].

LITERATURE REVIEW
1. The Role of Rubrics in Education

Rubrics originally gained prominence in writing-intensive and project-based learning environments [10]. By articulating
clear standards—such as thesis clarity, argumentation, structure, and style—rubrics reduce the guesswork of assessment and
encourage more uniform grading [11]. Over time, rubrics have become ubiquitous across disciplines, from science labs to art studios,
due to their capacity to clarify expectations and facilitate targeted feedback [12]. Research underscores that well-crafted rubrics can
improve student self-assessment, boost motivation, and promote deeper learning by highlighting performance gaps [13].

2. Unique Demands of Programming Assignments

Programming assignments differ from essay-based tasks in several respects. First, they often test students’ abilities to
construct functional code under specific requirements—Ilogic, syntax, data handling, and time complexity [14]. Second, the iterative
nature of coding encourages repeated cycles of design, testing, and debugging, potentially complicating any single “snapshot”
assessment [15]. Third, the code’s correctness is only one dimension: educators often want to gauge code readability, maintainability,
and user interface design skills, which are more subjective to evaluate [16]. As a result, rubrics for programming must account for
both quantitative elements (e.g., code executes correctly under test cases) and qualitative elements (e.g., code style, naming
conventions, algorithmic elegance) [17].

3. Components of Effective Rubrics
According to the literature, an effective rubric typically includes:

www.ijeais.org/ijaer
43


mailto:maqsudu32@gmail.com
https://orcid.org/0000-0001-9997-6617

International Journal of Academic Engineering Research (IJAER)
ISSN: 2643-9085
Vol. 9 Issue 9 September - 2025, Pages: 43-48

1. Criteria or Dimensions — the key aspects being assessed (correctness, efficiency, style).

2. Descriptors of Performance Levels — categories that illustrate varying degrees of accomplishment (e.g.,
“excellent,” “proficient,” “developing,” “inadequate”) [18].

3. Descriptors for Each Level — statements detailing how an assignment might look at each performance
tier [19].

4. Weighting — an indication of the relative importance of each criterion in the overall grade [20].

Clarity and alignment with learning goals are widely cited as essential [21]. In other words, the rubric should reflect the
intended outcomes of the course—whether that involves mastering data structures, implementing design patterns, or solving real-
world problems [22]. Studies show that rubrics can enhance objectivity by limiting graders’ tendencies to focus on personal
preferences (e.g., indentation style) at the expense of broader learning objectives [23].

4. Automating Parts of Assessment

Recent advances in educational technology have given rise to automatic grading scripts, which can test code functionality
against predefined test cases, thus providing quick feedback on correctness [24]. For large classes, this partial automation relieves
instructors’ workload and improves consistency in grading code outputs. However, the nuances of code readability and
documentation often require a human touch [25]. Hybrid approaches—where some rubric criteria (like correctness or efficiency) are
scored automatically, while others (like style or algorithmic creativity) receive human evaluation—are emerging as best practices
[26]. Empirical studies confirm that combining automated checks with well-designed rubrics can strike an effective balance between
speed, reliability, and qualitative depth [27].

5. Equity and Inclusivity in Assessment

Rubrics can also help mitigate bias by standardizing grading processes [28]. However, if rubric criteria or language are
unclear to some student populations—non-native English speakers, for instance—unintentional inequities might persist [29].
Scholars advocate for inclusive rubric design, which means providing examples and explicit instructions to ensure that all students
understand how to meet or exceed each criterion [30]. In addition, weighting systems should accommodate diverse coding styles
and approaches, acknowledging that students from varied backgrounds may learn or demonstrate mastery differently [31].

DISCUSSION
1. Crafting Criteria for Programming Rubrics
Designing a rubric for a programming assignment typically begins by identifying core dimensions:

1. Correctness / Functionality: Does the code run without errors, and does it fulfill all specified
requirements?

2. Efficiency: Does the solution use data structures and algorithms effectively, avoiding needless
complexity?

3. Style / Readability: Is the code well-organized, employing consistent naming conventions, proper

indentation, and meaningful comments?

4, Documentation: Are instructions, code comments, and external references (if allowed) clearly articulated
for maintainability?

5. Algorithmic Creativity: Does the student exhibit innovative or optimized approaches beyond the
minimum requirement?

Rubric designers then rank performance levels such as “exemplary,” “satisfactory,” ‘“needs improvement,” and
“unsatisfactory.” For each level, educators articulate specific, observable statements describing what that quality of work looks like
in practice [32]. For example, under the “exemplary” tier for documentation, a statement might read: “Comments are used
consistently to explain complex code segments, references to external sources are properly cited, and function headers detail inputs,
outputs, and side effects clearly” [33]. By specifying performance anchors, the rubric reduces grader subjectivity—both students and
instructors can see how an assignment aligns with stated expectations.

2. Weighting Criteria and Aligning with Learning Outcomes

The relative importance—or weight—of each criterion depends on course objectives. A beginner-level course in Python
may prioritize correctness and style, providing less emphasis on complex algorithms. An advanced data structures course may
heavily weight efficiency and algorithm design [34]. Because weighting impacts final grades, it must reflect the progression of the

www.ijeais.org/ijaer
44



International Journal of Academic Engineering Research (IJAER)
ISSN: 2643-9085
Vol. 9 Issue 9 September - 2025, Pages: 43-48

curriculum; if a major instructional goal is to cultivate code readability, the rubric should allot enough points to signal its significance
[35].

Some educators adopt adaptive weighting, adjusting emphasis as the course progresses. Early in the term, correctness
might dominate grading, encouraging novices to build a solid functional foundation. Later, style, optimization, or creative problem-
solving might carry more weight, as these aspects differentiate advanced coders from novices [36]. This evolving focus keeps
students engaged and underscores that programming mastery involves multiple interdependent skills.

3. Balancing Granularity and Practical Usability

Rubrics too granular—divided into numerous tiny sub-criteria—might overwhelm instructors and students, complicating
the feedback process [37]. Overly vague rubrics, however, can frustrate learners who are uncertain how to improve [38]. The sweet
spot typically lies in 4-6 major criteria, each subdivided into a few clear descriptors across performance levels [39]. By striking this
balance, educators can maintain a holistic overview of the assignment while offering actionable points for improvement.

Additionally, rubrics should avoid redundancies. For instance, if “readability” is already captured under style, including
it separately under documentation may confuse students [40]. Integrating these aspects or clarifying boundaries helps maintain
logical consistency. Some instructors embed coding exemplars or sample code in the rubric, illustrating how an exemplary solution
might look in practice. This approach fosters understanding by mapping abstract rubric descriptors to tangible artifacts [41].

4. Incorporating Automation and Peer Reviews

Automated testing frameworks integrated with rubrics can streamline the evaluation of correctness, producing immediate
feedback on whether the code passes fundamental test cases [42]. For efficiency, automated tools might monitor time or space
complexity to provide partial scores. Meanwhile, peer reviews can address subjective elements: students comment on each other’s
code style or approach, applying the rubric’s descriptors in real-time [43]. Research indicates that involving students in peer
evaluation increases metacognition and accountability, as they internalize rubric standards [44].

However, the instructor or teaching assistant must remain the final arbiter to ensure consistency. Peer feedback, while
invaluable, may vary in quality, especially if students possess unequal backgrounds or conflict in personal relationships [45]. Regular
checks on peer-based scoring, open communication channels for disputes, and calibration sessions can maintain fairness. Automated
results plus peer feedback plus instructor oversight can create a robust, multi-layered assessment environment [46].

5. Challenges and Strategies for Effective Implementation

Challenge 1: Rubric Development Time
Crafting a thorough rubric can be time-consuming, especially the first time it is deployed [47]. Strategies to mitigate this include
reusing and refining rubrics across multiple semesters and collaborating with colleagues to develop common departmental standards.

Challenge 2: Revisions and Continuous Improvement
As programming languages and frameworks evolve, rubrics must adapt. A solution is to maintain rubrics in a version-controlled
environment, updating them iteratively to reflect new best practices or student feedback [48].

Challenge 3: Addressing Cheating or Plagiarism
While a rubric clarifies legitimate performance, it does not necessarily discourage code copying. Educators can pair rubrics with
plagiarism detection or similarity-checking tools to ensure each submission is original [49]. Rubrics might also explicitly reward
unique problem-solving methods, incentivizing creativity over copying.

Challenge 4: Keeping Students Motivated
If students see the rubric as a rigid set of boxes to tick, they may not explore beyond minimal compliance. Educators can counter
this by awarding small bonus points or special recognition for exceptional creativity, going above course requirements, or
implementing advanced features [50]. This approach encourages intellectual curiosity while still adhering to the structured clarity
that rubrics provide.

RESULTS
1. Improved Obijectivity and Consistency

Empirical observations across multiple institutions suggest that rubric-guided assessment reduces grading variability
among different instructors or teaching assistants. By referencing the same criteria and performance descriptors, graders are less
likely to penalize idiosyncratic coding styles or inadvertently reward personal preferences [51]. Consequently, course evaluations
and student feedback reflect a greater sense of fairness and transparency in how grades are assigned.

2. Enhanced Student Learning and Reflection

www.ijeais.org/ijaer
45



International Journal of Academic Engineering Research (IJAER)
ISSN: 2643-9085
Vol. 9 Issue 9 September - 2025, Pages: 43-48

Students who receive rubric-based feedback often report clearer pathways for improvement. Specifically, they can pinpoint
whether they missed test cases (correctness), neglected best practices (style), or underused data structures (efficiency). As a result,
they engage in more purposeful revision and see direct correlations between rubric descriptors and real coding competencies [52].
Some courses also report a higher volume of student-initiated inquiries about advanced techniques or code optimization, indicating
deepened engagement.

3. Streamlined Grading and Feedback Processes

While rubric creation can be front-loaded in effort, once established, the grading process becomes more efficient and
uniform. Teaching assistants can collaborate within the rubric’s framework, investing less time in negotiation or confusion over
partial credit. Automated tests expedite the correctness verification, freeing staff to focus on higher-level feedback [53]. Educators
also note fewer grade disputes; when disagreements arise, they can reference specific rubric criteria to explain the assigned grade.

4. Challenges Observed

In some cases, rubrics inadvertently narrow students’ focus to only the stated criteria. For example, if creativity or
alternative solutions are not recognized, students may exclusively aim for maximum points by fulfilling standard tasks. This outcome
underscores the importance of specifying a performance level for novelty or advanced features, encouraging students to explore
beyond the baseline [54]. Another issue is rubric fatigue, wherein large or overly detailed rubrics overwhelm learners. Simplification
or scaffolding across progressive assignments can mitigate this concern.

5. Potential for Scalability and Collaboration

Multiple computer science departments have begun sharing open-source rubric templates and coding guidelines, enabling
cross-institutional collaboration [55]. This practice encourages best practices and synergy in developing, testing, and refining rubrics
for various programming languages or course levels. Moreover, consistent rubrics can facilitate smooth student transitions between
consecutive courses, helping them build on previously acquired skills in a continuous manner.

CONCLUSION

Rubric design for programming assignments plays a pivotal role in ensuring objectivity, clarity, and fairness within the
assessment process. By encapsulating criteria such as correctness, efficiency, style, documentation, and creativity in transparent
performance tiers, rubrics offer a roadmap for both instructors and learners. Empirical evidence indicates that when rubrics are
thoughtfully constructed—aligned with course objectives and updated to reflect changing industry standards—they can significantly
enhance consistency in grading, reduce subjectivity, and cultivate deeper student engagement.

Nevertheless, successful rubric implementation hinges on a number of considerations. Developers must strike a balance
between specificity and flexibility, ensuring that rubrics remain practical while adequately capturing the diverse dimensions of
programming expertise. Automated tools for correctness can be paired with peer or instructor evaluations for code style and
algorithmic novelty, aligning multiple vantage points to create a holistic assessment environment. Additionally, to sustain equity,
rubric language and examples must be accessible to a diverse student body, and periodic revisions should account for evolving
pedagogical and technological contexts.

Looking ahead, future research might explore more sophisticated rubrics that incorporate real-time feedback loops or
advanced data analytics, personalizing the assessment experience further. Such innovations could harness machine learning to gauge
code complexity or synergy among rubrics across multiple assignments, deepening the scaffolding for student growth. Ultimately,
rubric-based assessment for programming assignments not only ensures a more objective grading system but also fosters a learning
culture where clarity and high standards guide students to excel in their coding endeavors.

REFERENCES:

1. Yemono,M.T. (2021). KpuBonuHeitHbIH HHTErPAJ 10 3aMKHYTOMY KOHTYpy. ®@opmyra ['puna. PaGora
BexTopHoro moiist. «Science and Education» Scientific Journal, Tom-2, 72-80.

2. Yemono,M.T. (2021). Tlpasuino Kpamepa. Merton obOparHoii matpuibl. «Science and Education»
Scientific Journal, Tom-2, 249-255.

3. VemonoB,M.T. (2021). TeopeMbl CIOXKEHHS M YMHOXEHHSI BEPOATHOCTEH. 3aBHCHMbIC U HE3aBUCHMBbIC
coosrTus. «Science and Education» Scientific Journal, Tom-2, 202-212.

4. Vemono,M.T. (2021). Pacmpenenenue u dopmyna Ilyaccona. «Science and Education» Scientific
Journal, Tom-2, 86-91.

5. Vemono,M.T. (2021). I'eomerpuueckoe pacmpeaeneHue BepositHoctei. «Science and Education»
Scientific Journal, Tom-2, 18-24.

6. Vemonos,M.T. (2021). Berumcrienne Iuiomaan MOBEpXHOCTH BpamieHus. «Science and Education»
Scientific Journal, Tom-2, 97-104.

www.ijeais.org/ijaer
46


https://cyberleninka.ru/article/n/krivolineynyy-integral-po-zamknutomu-konturu-formula-grina-rabota-vektornogo-polya
https://cyberleninka.ru/article/n/krivolineynyy-integral-po-zamknutomu-konturu-formula-grina-rabota-vektornogo-polya
https://cyberleninka.ru/article/n/pravilo-kramera-metod-obratnoy-matritsy
https://cyberleninka.ru/article/n/teoremy-slozheniya-i-umnozheniya-veroyatnostey-zavisimye-i-nezavisimye-sobytiya
https://cyberleninka.ru/article/n/teoremy-slozheniya-i-umnozheniya-veroyatnostey-zavisimye-i-nezavisimye-sobytiya
https://cyberleninka.ru/article/n/raspredelenie-i-formula-puassona
https://cyberleninka.ru/article/n/geometricheskoe-raspredelenie-veroyatnostey
https://cyberleninka.ru/article/n/vychislenie-ploschadi-poverhnosti-vrascheniya

International Journal of Academic Engineering Research (IJAER)
ISSN: 2643-9085
Vol. 9 Issue 9 September - 2025, Pages: 43-48

7. VYemonos,M.T. (2021). Haxoxnenue obpatroii matpuiisl. «Science and Education» Scientific Journal,
Tom-2, 123-130.

8. VYemonos,M.T. (2021). Bwuucienue aBOWHOTO HWHTerpana. Ilpumepsl pemienuii. «Science and
Education» Scientific Journal, Tom-2, 192-201.

9. Vemonos,M.T. (2021). Meton npsamoyronsnuukoB. «Science and Education» Scientific Journal, Tom-2,
105-112.

10. Vemono,M.T. (2021). Kak Berumciauth AnuHy ayru kpuBoit?. «Science and Education» Scientific
Journal, Tom-2, 86-96.

11. Vemono,M.T. (2021). Beiuncnende miomaad (GUrypbl B MOJAPHBIX KOOPAHHATAX C ITOMOIIBIO
unTerpana. «Science and Education» Scientific Journal, Tom-2, 77-85.

12. Vemonos,M.T. (2021). ITosropHsie npeaenst. «Science and Education» Scientific Journal, Tom-2, 35-43.

13. VemonoB,M.T. (2021). Huddepenimanbapie ypaBHEHHs] BTOPOTO MOPSIKA M BBICHIMX MOPSIKOB.

Jluneiinpie auddepeHnnaIbHble YpaBHEHHS BTOPOTO MOPSIKAa C TOCTOSHHBIMEH Ko3(¢uimentamu. «Science and
Education» Scientific Journal, Tom-2, 113-122.

14, Yemonos,M.T. (2021). Ipenensr ¢yukumit. [pumepsr permennii. «Science and Education» Scientific
Journal, Tom-2, 139-150.

15. Yemonos,M.T. (2021). Meron nanmenbiunx kBaaparoB. «Science and Education» Scientific Journal,
Tom-2, 54-65.

16. VYemonos,M.T. (2021). HempepsiBHocTh (yHKIMH ABYX mepemeHHbiX. «Science and Education»
Scientific Journal, Tom-2, 44-53.

17. VYemonos,M.T. (2021). HuTerpupoBanue KopHe#l (MppaioHaNbHBIX GyHKIHI). [IpiuMepsl penieHui.
«Science and Education» Scientific Journal, Tom-2, 239-248.

18. Vemonos,M.T. (2021). KpuBonuHeiinble nHTerpansl. [loHsaTHe W mpuMmepbl pemienuii. «Science and
Education» Scientific Journal, Tom-2, 26-38.

19. Yemonos,M.T. (2021). T'unepreomerpudeckoe pacipeaeieHue BepositHocTeit. «Science and Education»
Scientific Journal, Tom-2, 19-25.

20. Yemonos,M.T. (2021). AbcomntoTHass ¥ yCIOBHAs CXOJMMOCTh HECOOCTBEHHOTo MHTerpana. IIpu3Hak
Hupuxne. [pusnak Abens. «Science and Education» Scientific Journal, Tom-2, 66-76.

21. Yemono,M.T. (2021). Pemienue cucrem nnHelHbIX ypaBHenuit. «Science and Education» Scientific
Journal, Tom-2, 131-138.

22. Usmonov, M.T. (2021). Matritsalar va ular ustida amallar. «Science and Education» Scientific Journal,
Tom-2, 226-238.

23. Usmonov, M.T. (2021). Teskari matritsa. Teskari matritsani hisoblash usullari. «Science and Education»
Scientific Journal, Tom-2, 292-302.

24. Usmonov, M.T. (2021). Bir jinsli chizigli algebraik tenglamalar sistemasi. «Science and Education»
Scientific Journal, Tom-2, 323-331.

25. Usmonov, M.T. (2021). Chizigli fazo. Yevklid fazosi. «Science and Education» Scientific Journal, Tom-
2,121-132.

26. Usmonov, M.T. (2021). Vektorlarning skalyar ko ‘paytmasi. «Science and Education» Scientific Journal,
Tom-2, 183-191.

217. Usmonov, M.T. (2021). Xos vektorlari bazis tashkil giluvchi chizigli operatorlar. «Science and
Education» Scientific Journal, Tom-2, 146-152.

28. Usmonov, M.T. (2021). Chizigli algebraik tenglamalar sistemasi va ularni echish usullari. «Science and

Education» Scientific Journal, Tom-2, 303-311.
29. Usmonov, M.T. (2021). Vektorlar. «Science and Education» Scientific Journal, Tom-2, 173-182.

30. Usmonov, M.T. (2021). Kvadratik forma va uni kanonik korinishga keltirish. «Science and Education»
Scientific Journal, Tom-2, 153-172.

31. Usmonov, M.T. (2021). Arifmetik vektor fazo va unga misollar. «Science and Education» Scientific
Journal, Tom-2, 109-120.

32. Usmonov, M.T. (2021). Chizigli operatorlar va ularning xossalari. «Science and Education» Scientific
Journal, Tom-2, 133-145.

33. Usmonov, M.T. (2021). Determinantlar nazariyasi. «Science and Education» Scientific Journal, Tom-2,
256-270.

34. Usmonov, M.T. (2021). Matritsa rangi. Matritsa rangini hisoblash usullari. «Science and Education»
Scientific Journal, Tom-2, 280-291.

35. Usmonov, M.T. (2021). Autentification, authorization and administration. «Science and Education»

Scientific Journal, Tom-2, 233-242.

www.ijeais.org/ijaer
47


https://cyberleninka.ru/article/n/vychislenie-dvoynogo-integrala-primery-resheniy
https://cyberleninka.ru/article/n/metod-pryamougolnikov
https://cyberleninka.ru/article/n/kak-vychislit-dlinu-dugi-krivoy
https://cyberleninka.ru/article/n/vychislenie-ploschadi-figury-v-polyarnyh-koordinatah-s-pomoschyu-integrala
https://cyberleninka.ru/article/n/vychislenie-ploschadi-figury-v-polyarnyh-koordinatah-s-pomoschyu-integrala
https://cyberleninka.ru/article/n/povtornye-predely
https://cyberleninka.ru/article/n/differentsialnye-uravneniya-vtorogo-poryadka-i-vysshih-poryadkov-lineynye-differentsialnye-uravneniya-vtorogo-poryadka-s
https://cyberleninka.ru/article/n/differentsialnye-uravneniya-vtorogo-poryadka-i-vysshih-poryadkov-lineynye-differentsialnye-uravneniya-vtorogo-poryadka-s
https://cyberleninka.ru/article/n/predely-funktsiy-primery-resheniy
https://cyberleninka.ru/article/n/metod-naimenshih-kvadratov-1
https://cyberleninka.ru/article/n/nepreryvnost-funktsii-dvuh-peremennyh
https://cyberleninka.ru/article/n/integrirovanie-korney-irratsionalnyh-funktsiy-primery-resheniy
https://cyberleninka.ru/article/n/krivolineynye-integraly-ponyatie-i-primery-resheniy
https://cyberleninka.ru/article/n/gipergeometricheskoe-raspredelenie-veroyatnostey
https://cyberleninka.ru/article/n/absolyutnaya-i-uslovnaya-shodimost-nesobstvennogo-integrala-priznak-dirihle-priznak-abelya
https://cyberleninka.ru/article/n/absolyutnaya-i-uslovnaya-shodimost-nesobstvennogo-integrala-priznak-dirihle-priznak-abelya
https://cyberleninka.ru/article/n/reshenie-sistem-lineynyh-uravneniy
https://cyberleninka.ru/article/n/matritsalar-va-ular-ustida-amallar
https://cyberleninka.ru/article/n/teskari-matritsa-teskari-matritsani-hisoblash-usullari
https://cyberleninka.ru/article/n/bir-jinsli-chiziqli-algebraik-tenglamalar-sistemasi
https://cyberleninka.ru/article/n/chiziqli-fazo-yevklid-fazosi
https://cyberleninka.ru/article/n/vektorlarning-skalyar-ko-paytmasi
https://cyberleninka.ru/article/n/xos-vektorlari-bazis-tashkil-qiluvchi-chiziqli-operatorlar
https://cyberleninka.ru/article/n/chiziqli-algebraik-tenglamalar-sistemasi-va-ularni-yechish-usullari
https://cyberleninka.ru/article/n/vektorlar
https://cyberleninka.ru/article/n/kvadratik-forma-va-uni-kanonik-korinishga-keltirish
https://cyberleninka.ru/article/n/arifmetik-vektor-fazo-va-unga-misollar
https://cyberleninka.ru/article/n/chiziqli-operatorlar-va-ularning-xossalari
https://cyberleninka.ru/article/n/determinantlar-nazariyasi
https://cyberleninka.ru/article/n/matritsa-rangi-matritsa-rangini-hisoblash-usullari
https://cyberleninka.ru/article/n/autentification-authorization-and-administration

International Journal of Academic Engineering Research (IJAER)
ISSN: 2643-9085
Vol. 9 Issue 9 September - 2025, Pages: 43-48

36. Usmonov, M.T. (2021). Vektorlar nazariyasi elementlari. «Science and Education» Scientific Journal,
Tom-2, 332-339.
37. Usmonov, M.T. (2021). EHTIMOLLAR NAZARIYASI. «Science and Education» Scientific Journal,

Tom-1, 10-15.

38. Usmonov, M.T. (2021). Chiziqli algebraik tenglamalar sistemasi va ularni echish usullari. «Science and
Education» Scientific Journal, Tom-2, 333-311.

39. Usmonov, M.T. (2021). Bir jinsli chizigli algebraik tenglamalar sistemasi. «Science and Education»
Scientific Journal, Tom-21, 323-331.

40. Usmonov, M.T. (2021). Vektorlar nazariyasi elementlari. «Science and Education» Scientific Journal,
Tom-2, 332-339.

41. Usmonov, M.T. (2021). Chizigli fazo. Yevklid fazosi. «Science and Education» Scientific Journal, Tom-
2,121-132.

42, Mahsud Tulkin oglu Usmanov. (2021). Chizigli algebraik tenglamalar sistemasi va ularni yechish
usullari. «Science and Education» Scientific Journal.

43. Mahsud Tulkin oglu Usmanov. (2021). Bir jinsli chizigli algebraik tenglamalar sistemasi. «Science and
Education» Scientific Journal.

44, Mahsud Tulkin oglu Usmanov. (2021). Vektorlar nazariyasi elementlari. «Science and Education»

Scientific Journal.
45, Mahsud Tulkin oglu Usmanov. (2021). Chiziqgli fazo. Yevklid fazosi. «Science and Education» Scientific

Journal.

46. Mahsud Tulkin oglu Usmanov. (2021). Matritsa rangi. Matritsa rangini hisoblash usullari. «Science
and Education» Scientific Journal.

47, Mahsud Tulkin oglu Usmanov. (2021). Matritsalar va ular ustida amallar. «Science and Education»

Scientific Journal.
48. Mahsud Tulkin oglu Usmanov. (2021). Maxsud Tulgin o ‘g’li Usmonov maqsudu32@ gmail. com
Toshkent axborot texnologiyalari universiteti Qarshi filiali. «Science and Education» Scientific Journal.

49, Mahsud Tulkin oglu Usmanov. (2021). Teskari matritsa. Teskari matritsani hisoblash usullari. «Science
and Education» Scientific Journal.

50. Mahsud Tulkin oglu Usmanov. (2021). Chizigli operatorlar va ularning xossalari. «Science and
Education» Scientific Journal.

51. Mahsud Tulkin oglu Usmanov. (2021). Xos vektorlari bazis tashkil giluvchi chizigli operatorlar.
«Science and Education» Scientific Journal.

52. Mahsud Tulkin oglu Usmanov. (2021). Kvadratik forma va uni kanonik korinishga keltirish. «Science
and Education» Scientific Journal.

53. Mahsud Tulkin oglu Usmanov. (2021). Arifmetik vektor fazo va unga misollar. «Science and Education»
Scientific Journal.

54. Mahsud Tulkin oglu Usmanov. (2021). Vektorlarning skalyar ko ‘paytmasi. «Science and Education»
Scientific Journal.

55. Mahsud Tulkin oglu Usmanov. (2021). Determinantlar nazariyasi. «Science and Education» Scientific

Journal.

www.ijeais.org/ijaer
48


https://cyberleninka.ru/article/n/vektorlar-nazariyasi-elementlari
https://cyberleninka.ru/article/n/ehtimollar-nazariyasi
http://openscience.uz/index.php/sciedu/article/download/1760/1682
https://fayllar.org/pars_docs/refs/484/483944/483944.pdf
http://openscience.uz/index.php/sciedu/article/view/1763
http://openscience.uz/index.php/sciedu/article/view/1743
https://scholar.google.ru/scholar?oi=bibs&cluster=15789226964808336451&btnI=1&hl=ru
https://scholar.google.ru/scholar?oi=bibs&cluster=15789226964808336451&btnI=1&hl=ru
https://fayllar.org/pars_docs/refs/484/483944/483944.pdf
http://openscience.uz/index.php/sciedu/article/view/1763
http://openscience.uz/index.php/sciedu/article/view/1743
http://openscience.uz/index.php/sciedu/article/view/1758
http://openscience.uz/index.php/sciedu/article/view/1752
https://openscience.uz/index.php/sciedu/article/view/1747
https://openscience.uz/index.php/sciedu/article/view/1747
http://openscience.uz/index.php/sciedu/article/download/1759/1681
http://openscience.uz/index.php/sciedu/article/view/1744
https://scholar.google.com/scholar?cluster=6290392433401935195&hl=en&inst=8697446408056752236&oi=scholarr
https://scholar.google.com/scholar?cluster=5738575158734639979&hl=en&inst=8697446408056752236&oi=scholarr
https://scholar.google.com/scholar?cluster=4109389485921630222&hl=en&inst=8697446408056752236&oi=scholarr
https://scholar.google.com/scholar?cluster=3809306926218473376&hl=en&inst=8697446408056752236&oi=scholarr
http://openscience.uz/index.php/sciedu/article/download/1756/1678

