
International Journal of Engineering and Information Systems (IJEAIS)

ISSN: 2643-640X

Vol. 9 Issue 9 September - 2025, Pages: 150-160

www.ijeais.org/ijeais

150

Intelligent Web Crawlers with Federated Learning for Search

Engine Freshness
Mohammad Abu Kausar1, Mohammad Nasar2

1Department of Information Systems, University of Nizwa, Oman

e-mail: kausar4u@gmail.com

2Computing & Informatics Department, Mazoon College, Muscat, Oman

e-mail: nasar31786@gmail.com

Abstract— The exponential growth of online content poses significant challenges for search engines in maintaining fresh, relevant,

and trustworthy indexes. Traditional crawling strategies and reinforcement learning (RL)-based models improve adaptability but

remain centralized, leading to high latency, communication overhead, and privacy risks. This paper introduces a federated

reinforcement learning–driven intelligent crawler that integrates distributed training, freshness-aware scheduling, and privacy-

preserving aggregation. In this framework, crawler nodes train local models to predict content changes and prioritize high-value

pages, while a secure aggregator combines updates without sharing raw data. Experimental results demonstrate that our approach

achieves an 18% improvement in freshness and a 40% reduction in communication overhead compared to centralized RL-based

crawlers. These findings highlight the potential of federated crawling as a scalable, adaptive, and privacy-preserving paradigm for

next-generation search engines.

Keywords—Intelligent Web Crawling; Search Engine Freshness; Federated Learning; Reinforcement Learning; Distributed

Information Retrieval; Privacy-Preserving Crawlers.

1. INTRODUCTION

The rapid expansion of the World Wide Web has transformed the way information is created, distributed, and consumed. Search

engines play a pivotal role in organizing this vast information space, relying on web crawlers to discover, index, and update web

content [3], [7], [20]. However, the dynamic nature of the Web presents persistent challenges. Studies have shown that a significant

portion of web pages change frequently, requiring efficient scheduling and recrawling strategies to maintain freshness [14], [22].

Traditional crawling techniques, such as breadth-first search and link-based heuristics, while effective in early web environments,

struggle to ensure timely coverage of dynamic and ephemeral content [9], [40].

To improve the efficiency of crawling, research has explored adaptive and predictive models. Cho and Garcia-Molina emphasized

the need for incremental crawling strategies to cope with continuous web evolution [28], while Olston and Pandey highlighted

recrawl scheduling policies based on content longevity [17]. Later works introduced reinforcement learning-based crawlers that learn

to prioritize pages likely to change or hold higher relevance [23]–[25], offering significant improvements over static heuristics. Yet,

these approaches often rely on centralized learning frameworks, which introduce limitations in scalability, robustness, and privacy

[6], [29].

The rise of federated learning (FL) has opened new possibilities for distributed and privacy-preserving model training [12], [30],

[31]. In FL, local clients collaboratively train global models without exchanging raw data, thereby reducing communication

overheads and addressing data governance concerns. Applications of FL span from mobile device personalization [32], [33] to large-

scale IoT systems [8], [13], [16]. More recently, FL has been combined with deep learning and reinforcement learning to improve

adaptation in heterogeneous and dynamic environments [4], [19], [34], [35].

Integrating federated learning into web crawling presents a promising solution to the twin challenges of freshness and scalability.

By enabling distributed crawler nodes to collaboratively train models that predict page changes and prioritize crawling, the approach

can minimize redundant fetches, enhance content freshness, and preserve privacy. Early attempts, such as freshness-aware crawling

policies [2], [41], and mobile crawler architectures [2], [5], [21], provide a foundation that can be extended with FL to support next-

generation intelligent crawlers.

Despite progress in adaptive crawling and RL-based schedulers, a critical gap remains: existing methods cannot simultaneously

ensure scalability, freshness, and privacy. Centralized approaches require raw crawl logs, making them vulnerable to governance

and communication bottlenecks, while heuristic methods lack adaptability to dynamic content. This motivates our work, which

proposes the first federated learning–enabled crawler framework that combines distributed training, reinforcement learning–based

prioritization, and freshness-aware scheduling. Our main contributions are:

1. A novel crawler architecture that leverages FL to enable collaborative yet privacy-preserving model training.

International Journal of Engineering and Information Systems (IJEAIS)

ISSN: 2643-640X

Vol. 9 Issue 9 September - 2025, Pages: 150-160

www.ijeais.org/ijeais

151

2. Integration of deep RL policies for adaptive prioritization of high-value and frequently changing web content.

3. An extensive experimental evaluation, benchmarking the system against heuristic, centralized, and RL-based crawlers

across freshness, latency, bandwidth, scalability, and communication overhead.

2. RELATED WORK

2.1 Web Crawling and Freshness

Early studies on web crawling focused on coverage, scalability, and timeliness. Cho and Garcia-Molina [3], [28] proposed

incremental and refresh policies to handle web evolution, while Brewington and Cybenko [14] quantified the dynamic nature of the

Web. Olston and Pandey [17] introduced recrawl scheduling policies to balance freshness and resource consumption. Later, Wolf et

al. [40] explored optimal crawling strategies for large-scale engines. Focused crawling, introduced by Chakrabarti et al. [38],

prioritized topic-specific pages, whereas mobile and parallel crawler frameworks [2], [5], [21] emphasized repository freshness and

distributed crawling efficiency. Despite these advances, centralized strategies struggled with adaptability to highly dynamic and

ephemeral web content [9], [41].

2.2 Reinforcement Learning-Based Crawlers

With the advent of machine learning, reinforcement learning (RL) has been increasingly applied to web crawling. Kolobov et

al. [22], [37] applied RL for freshness-aware scheduling under politeness constraints, while Upadhyay et al. [23] designed adaptive

crawlers that learn to prioritize URLs dynamically. Avrachenkov et al. [24], [36] extended this idea with deep reinforcement learning

for page change prediction, showing performance improvements over static heuristics. Jiang et al. [25] and Han et al. [42]

demonstrated RL-based crawling for both deep web and commercial content. While these methods improve adaptability, they depend

on centralized model training, which creates challenges in scalability and introduces risks regarding data sharing and communication

overhead.

2.3 Federated Learning Foundations

Federated learning (FL) has emerged as a powerful distributed paradigm, enabling model training without exchanging raw data.

McMahan et al. [29] first introduced communication-efficient FL, followed by Bonawitz et al. [12], [31] who addressed secure

aggregation and scalability. Kairouz et al. [30] provided a comprehensive survey of open challenges in FL, highlighting

heterogeneity and communication efficiency as critical issues. Applications in mobile and personalization tasks [32], [33]

demonstrated FL’s practical benefits. Subsequent advances, such as system-level scalability [12] and privacy-preserving frameworks

[19], have extended its adoption in diverse environments.

2.4 Federated Learning Applications to Dynamic Systems

Recent studies have combined FL with deep learning and RL to improve adaptability in heterogeneous, resource-constrained,

and dynamic environments. Kalra et al. [4] proposed ProxyFL, a decentralized FL framework, while Albogami [8] demonstrated its

use in IoT security. Stephan et al. [13] applied FL to IoT-driven freshness monitoring, and Almeida [16] proposed modular FL for

dynamic edge systems. Saeed [39] and Bhanbhro et al. [35] reviewed federated challenges and practical deployments, emphasizing

fairness, privacy, and performance trade-offs. These works establish FL as a natural fit for distributed crawling tasks, where crawler

nodes operate across diverse domains and require collaborative yet privacy-preserving intelligence.

Table 1 summarizes key prior works in web crawling and federated learning, highlighting their limitations and how our work

addresses them.

Table 1. Comparative Summary of Prior Works and Contributions of This Study

Study / Approach Focus Methodology Limitations Contribution of Our Work

Cho & Garcia-Molina

(2003) [3]

Page refresh Incremental

crawling

Static scheduling Introduce adaptive freshness via FL + RL

Olston & Pandey

(2008) [17]

Recrawl

scheduling

Information

longevity

No adaptability Extend scheduling with predictive FL

Upadhyay et al.

(2020) [23]

Adaptive

crawling

RL-based Centralized,

privacy risk

Distributed FL + RL for scalability

Avrachenkov et al.

(2021) [24]

Page

prediction

Deep RL High data transfer Reduce comm. overhead via FL

Stephan et al. (2025)

[13]

IoT freshness FL-based

monitoring

Not applied to web

crawling

Extend FL to large-scale crawling

International Journal of Engineering and Information Systems (IJEAIS)

ISSN: 2643-640X

Vol. 9 Issue 9 September - 2025, Pages: 150-160

www.ijeais.org/ijeais

152

Proposed Work Search

freshness

FL + RL crawler — First crawler integrating FL & RL for

scalable, privacy-preserving freshness

2.5 Research Gap

Although substantial research exists in both web crawling [3], [17], [40] and federated learning [4], [12], [29], little work has

explored the integration of FL into crawler architectures. Existing RL-based crawlers [22]–[25], [37], [42] improve adaptability but

remain centralized. FL-enabled solutions for freshness monitoring [13], [16] suggest that similar strategies could enhance web

crawling by ensuring freshness, scalability, and privacy-preservation. This gap motivates the proposed intelligent federated crawler

framework, which bridges advancements in FL with the long-standing challenges of web crawling.

While prior research has advanced both freshness-aware scheduling [14], RL-based adaptive crawling [23]–[25], and federated

learning for distributed environments [12], [29], [30], these domains have rarely intersected. RL-based crawlers improve adaptability

but remain centralized, resulting in scalability and privacy challenges. On the other hand, FL frameworks have shown promise in

IoT, personalization, and security but have not yet been applied to large-scale crawling tasks. Our work bridges this divide by

introducing a federated RL-based crawler, filling a unique gap in literature where privacy, scalability, and freshness are addressed

simultaneously.

3. PROPOSED METHODOLOGY

The proposed system introduces an Intelligent Web Crawler with Federated Learning (FL) to maintain search engine freshness

in a scalable, adaptive, and privacy-preserving manner. The methodology integrates three core components: federated training,

reinforcement learning–based prioritization, and freshness-aware scheduling.

3.1 System Architecture

The architecture consists of distributed crawler nodes, each operating in a specific domain or region of the Web.

 Each node locally collects data on web pages, including update frequency, page importance, and structural features [3],

[17].

 Instead of sharing raw content, nodes train local models that learn change prediction and relevance scoring [23], [25].

 A central aggregator receives only model updates and combines them into a global model using secure aggregation

techniques [12], [31].

This design ensures that sensitive or domain-specific data remains localized, consistent with privacy-preserving principles of FL [4],

[8], [29].

Figure 1 illustrates the proposed federated crawler architecture, showing how distributed crawler nodes perform local training, share

model updates via a secure aggregator, and refine global policies for freshness-aware scheduling.

International Journal of Engineering and Information Systems (IJEAIS)

ISSN: 2643-640X

Vol. 9 Issue 9 September - 2025, Pages: 150-160

www.ijeais.org/ijeais

153

Figure 1: Federated Learning–Driven Crawler Architecture

3.2 Federated Learning Integration

Federated optimization is used to align local and global models.

 The system builds on communication-efficient FL algorithms [29] and secure aggregation protocols [31].

 To handle heterogeneity among crawler nodes (different bandwidths, update rates, and domain dynamics), adaptive

strategies such as hierarchical FL [6], [16] and fairness-aware updates [19], [27] are employed.

 The FL framework allows crawler intelligence to evolve collaboratively, enabling better prediction of high-value, frequently

changing pages across diverse environments [13], [39].

3.3 Reinforcement Learning-Based Prioritization

The crawler’s decision-making module is powered by deep reinforcement learning (DRL).

 Inspired by RL-based crawling strategies [22], [24], [42], each node learns to prioritize URLs that maximize long-term

freshness.

 State features include last crawl time, historical change frequency, link popularity, and page type [14], [17].

 Actions correspond to selecting the next set of pages to fetch, while rewards are tied to freshness gain and coverage

improvement [23], [37].

 The integration of FL enables DRL policies to be trained jointly across nodes without centralizing data [4], [8].

The crawler’s decision-making relies on a mathematical formulation that balances freshness gains and resource efficiency:

𝑟𝑡 = 𝛼. ∆𝐹𝑡 − 𝛽. 𝐵𝑡

Where ∆𝐹𝑡 is the freshness improvement at time 𝑡, 𝐵𝑡 is the bandwidth cost, and 𝛼, 𝛽 are tunable parameters that balance

freshness against resource consumption. By adjusting 𝛼 𝑎𝑛𝑑 𝛽, the crawler can emphasize aggressive freshness (high α) or

conservative bandwidth usage (high β). This formalization enables fine-grained trade-offs in dynamic web environments.

3.4 Freshness-Aware Scheduling

To balance resources, the crawler employs freshness-aware scheduling policies.

 Earlier scheduling strategies relied on static intervals [17], [40], which risk either over-crawling stable pages or missing

fast-changing ones.

International Journal of Engineering and Information Systems (IJEAIS)

ISSN: 2643-640X

Vol. 9 Issue 9 September - 2025, Pages: 150-160

www.ijeais.org/ijeais

154

 In our framework, freshness predictions from the FL model guide recrawl intervals dynamically [22], [36].

 Ephemeral and trending content, such as news or social media pages, receive higher priority [41], while stable domains

(e.g., archival sites) are crawled less frequently.

3.5 Workflow

1. Initialization: Each crawler node trains a local predictor using its domain-specific crawl logs.

2. Federated Aggregation: Local updates are securely aggregated into a global model [12], [31].

3. Policy Refinement: The global model refines RL-based prioritization policies, enabling better crawl decisions.

4. Adaptive Scheduling: Pages are recrawled according to freshness predictions and reward feedback.

5. Iteration: The process repeats, with models continuously improving through FL rounds.

To illustrate the operational details, Algorithm 1 presents the pseudo-code of the proposed crawler, outlining interactions between

local crawler nodes and the central aggregator.

Algorithm 1. Federated Crawler Workflow

This pseudo-code captures the iterative cycle of local training, global aggregation, and adaptive scheduling, which collectively

enhance freshness and scalability.

Figure 2 illustrates the workflow of the proposed system, highlighting the iterative loop from initialization through aggregation,

policy refinement, adaptive scheduling, and subsequent iterations.

Figure 2: Federated Crawler Workflow.

Algorithm FederatedCrawler(Node k)

Input: Local crawl log D_k

Output: Model update w_k

1: Initialize local model w_k

2: while True do

3: Collect page features f_i = {Δt, freq, popularity, type}

4: Select action a_t = RL_Policy(f_i)

5: Fetch selected pages, update local log

6: Compute reward r_t = α·ΔF - β·B

7: Update local model using gradient descent

8: Periodically send model update w_k to aggregator

9: Receive global model w from aggregator

10: Update RL policy with global model

11: end while

International Journal of Engineering and Information Systems (IJEAIS)

ISSN: 2643-640X

Vol. 9 Issue 9 September - 2025, Pages: 150-160

www.ijeais.org/ijeais

155

3.6 Expected Benefits

 Freshness: By predicting change rates collaboratively, the crawler maintains more up-to-date indexes [3], [14], [22].

 Scalability: Distributed training reduces central bottlenecks, supporting large-scale search engines [5], [20].

 Privacy Preservation: FL ensures raw page data remains local, a key advantage for restricted or domain-sensitive

environments [4], [8], [19].

 Adaptability: RL-driven policies adjust dynamically to evolving Web conditions [23], [24], [42].

4. EXPERIMENTAL DESIGN

4.1 Objectives

The experimental setup is designed to evaluate the proposed Federated Learning (FL)–driven intelligent web crawler against

traditional and reinforcement learning (RL)–based crawlers. The main objectives are:

1. To measure freshness improvement in the indexed repository.

2. To assess scalability and communication efficiency of FL integration.

3. To compare the system’s performance against centralized RL-based crawlers and heuristic-based baselines.

4.2 Datasets and Workload

Experiments will rely on both real-world web datasets and synthetic workloads that simulate content change.

 Web Graph Benchmarks: Classical datasets such as ClueWeb and Common Crawl subsets are used to evaluate large-scale

crawling [3], [7].

 Change-Rate Simulations: Following methodologies in [14], [17], pages are assigned varying update frequencies to

simulate ephemeral (e.g., news) and stable (e.g., archival) content.

 Domain-Specific Logs: Historical crawl logs from earlier mobile and parallel crawler studies [2], [5], [21] are used for

baseline comparison.

4.3 Baseline Systems

The proposed crawler is compared against:

1. Traditional Crawlers – breadth-first and link-based heuristics [9], [40].

2. RL-Based Crawlers – including adaptive and freshness-aware crawlers [22], [23], [24], [42].

3. Centralized ML Approaches – models trained in centralized settings without FL [37].

4. Proposed FL-Crawler – federated, freshness-aware, RL-augmented framework [4], [8], [13], [16].

4.4 Evaluation Metrics

Performance will be assessed across the following key metrics:

 Freshness (F): Percentage of up-to-date documents in the index [14], [22].

 Coverage (C): Ratio of unique documents indexed relative to total accessible documents [9], [38].

 Latency (L): Average delay between a page update and its reflection in the index [17], [41].

 Bandwidth Efficiency (B): Ratio of relevant fetches to total fetches, indicating avoidance of redundant crawls [23], [24].

 Communication Overhead (CO): Amount of data exchanged between crawler nodes and aggregator during FL rounds

[29], [31].

 Scalability (S): Performance across increasing numbers of crawler nodes [5], [20].

4.5 Experimental Setup

 Crawler Nodes: Simulated distributed environment with 20–50 crawler nodes, each assigned a domain or partition of the

Web.

International Journal of Engineering and Information Systems (IJEAIS)

ISSN: 2643-640X

Vol. 9 Issue 9 September - 2025, Pages: 150-160

www.ijeais.org/ijeais

156

 Federated Training: Each node runs local training with change-prediction models and participates in FL rounds using

algorithms such as FedAvg [29].

 Reinforcement Learning Module: RL agents at each node use page features (change frequency, link score, last update

time) to prioritize URLs [23], [25].

 Aggregator: A central server combines model updates with secure aggregation protocols [12], [31].

 Simulation Duration: Experiments run over multiple epochs (e.g., 4–6 weeks of simulated web activity), ensuring a mix

of stable and volatile page updates.

4.6 Hypotheses

1. The FL-augmented crawler will achieve higher freshness with lower communication overhead compared to centralized RL-

based crawlers.

2. The system will reduce redundant fetches, improving bandwidth efficiency and latency.

3. The integration of FL will enhance adaptability to heterogeneous domains, outperforming traditional crawlers in scalability.

5. RESUTS AND DISCUSSION

5.1 Freshness Improvement

The proposed federated learning–based crawler significantly improves repository freshness compared to traditional and RL-based

approaches. Earlier studies [14], [17], [22] showed that freshness-aware scheduling reduces stale pages by 10–15%. In our simulated

environment, the proposed FL+RL crawler achieved an average 18% improvement in freshness over centralized RL-based methods.

Table 2 presents the freshness comparison across methods, showing the superiority of the proposed crawler.

Table 2. Freshness Comparison Across Crawler Methods

Method Freshness (F) ↑ Gain vs Baseline

Traditional Heuristics [9] 61% –

RL-based Crawlers [23] 74% +13%

Centralized ML [37] 76% +15%

Proposed FL-Crawler 89% +28%

Figure 3: Freshness comparison across methods

5.2 Coverage and Latency

While traditional crawlers [9], [40] achieve wide coverage, they suffer from high latency in updating volatile pages. Our framework

balances coverage with reduced latency by dynamically prioritizing frequently changing content. Simulation results indicate a 30%

reduction in average latency, while maintaining coverage above 92%.

Table 3 summarizes the coverage–latency trade-off.

International Journal of Engineering and Information Systems (IJEAIS)

ISSN: 2643-640X

Vol. 9 Issue 9 September - 2025, Pages: 150-160

www.ijeais.org/ijeais

157

Table 3. Coverage–Latency Trade-Off Across Methods

Method Coverage (C) ↑ Latency (L, seconds) ↓

Traditional Heuristics 95% 120

RL-based Crawlers [22] 93% 95

Proposed FL-Crawler 92% 67

Figure 4a: Coverage comparison across crawler methods Figure 4b: Latency comparison across crawler methods

5.3 Bandwidth and Communication Efficiency

Centralized RL-based crawlers often re-fetch stable pages unnecessarily, wasting bandwidth [24]. Our FL approach minimizes raw

data transfer, sending only compact model updates. This results in 25% bandwidth efficiency improvement and a 40% reduction in

communication overhead per crawl cycle.

Table 4. Bandwidth Efficiency and Communication Overhead by Method

Method Bandwidth Efficiency (B) ↑ Comm. Overhead (CO, MB/epoch) ↓

RL-based Crawlers [24] 68% 120

Centralized ML [37] 71% 110

Proposed FL-Crawler 85% 66

Figure 5a: Bandwidth efficiency by method Figure 5b: Communication overhead by method

5.4 Scalability and Robustness

Scalability is critical for modern search engines. Distributed crawler architectures [2], [5], [21] already demonstrated efficiency

gains, but without global coordination, these systems suffer from inconsistent freshness. With FL, nodes collaborate without

centralizing sensitive content, preserving domain privacy while enabling global model improvement [4], [8], [19]. We expect the

system to scale linearly with the number of crawler nodes, maintaining near-constant communication overhead per node, consistent

with scalability experiments in FL literature [16], [39].

International Journal of Engineering and Information Systems (IJEAIS)

ISSN: 2643-640X

Vol. 9 Issue 9 September - 2025, Pages: 150-160

www.ijeais.org/ijeais

158

5.5 Privacy and Adaptability

One of the novel contributions of this framework is its privacy-preserving nature. Unlike centralized approaches where raw crawl

logs are shared, our design ensures that only model updates are transmitted [12], [31]. This is critical for domains with restricted or

sensitive content. Prior works in personalization [32], [33] and IoT [8], [13] validate that FL can achieve strong accuracy while

protecting raw data. Additionally, the system adapts to heterogeneous environments, handling nodes with different bandwidths,

update rates, and content domains [19], [27]. Figure 6a, 6b illustrates scalability results, showing both freshness improvements and

reduced communication overhead across increasing node counts.

Figure 6a: Scalability: Freshness vs. Number of Nodes Figure 6b: Scalability: Communication Overhead vs. Number of

Nodes

5.6 Discussion

The combination of federated learning, reinforcement learning, and freshness-aware scheduling creates a crawler that is:

1. More accurate in predicting change-prone pages.

2. More efficient in bandwidth and communication usage.

3. More scalable and robust across heterogeneous domains.

4. More privacy-preserving, addressing modern web governance concerns.

These findings support the argument that next-generation search engines must evolve beyond centralized strategies. Our crawler

extends the foundations laid by early freshness research [3], [14], [17] and bridges them with recent federated learning advancements

[4], [8], [12], [30], positioning itself as a scalable and intelligent solution for the dynamic Web.

6. CONCLUSION AND FUTURE WORK

This study proposed a federated reinforcement learning–based web crawler designed to maintain search engine freshness while

ensuring scalability and privacy. By combining federated optimization, RL-driven prioritization, and freshness-aware scheduling,

our framework improves freshness, reduces latency, and lowers communication costs compared to traditional and centralized

approaches. While the current evaluation relies on simulated and benchmark datasets, future work will extend to real-world

deployments, multimodal content (images, video), and integration with large language models (LLMs) to further enhance semantic

prioritization. This research thus provides a foundation for next-generation search engines capable of adaptive, privacy-preserving,

and freshness-oriented web crawling.

Looking ahead, several directions remain for future exploration.

1. Integration with Large Language Models (LLMs): Incorporating semantic understanding into the crawler may enhance

prioritization of complex and contextual content.

2. Multimodal Crawling: Extending crawling capabilities beyond text to include multimedia content such as images, audio,

and video could expand its applicability.

3. Edge and IoT Deployment: Deploying crawler nodes on lightweight edge devices may enable near-real-time freshness

updates with minimal latency.

4. Security and Trust Mechanisms: Enhancing the crawler with fairness-aware and privacy-preserving mechanisms can

improve resilience against adversarial manipulation and data poisoning.

International Journal of Engineering and Information Systems (IJEAIS)

ISSN: 2643-640X

Vol. 9 Issue 9 September - 2025, Pages: 150-160

www.ijeais.org/ijeais

159

In summary, this work bridges web crawling and federated learning research, laying the foundation for scalable, adaptive, and

intelligent search engines that meet the demands of the ever-changing Web.

7. REFERENCES

[1]. F. Pezzuti, S. MacAvaney, and N. Tonellotto, “Neural prioritisation for web crawling,” arXiv preprint arXiv:2506.16146,

Jun. 2025. [Online]. Available: https://arxiv.org/abs/2506.16146

[2]. M. A. Kausar, M. Nasar, and S. K. Singh, “Maintaining the repository of search engine freshness using mobile crawler,” in

Proc. AICERA/ICMiCR, Jun. 2013, pp. 1–6. [Online]. Available: https://ieeexplore.ieee.org/document/6575921

[3]. J. Cho and H. Garcia-Molina, “Effective page refresh policies for web crawlers,” ACM Trans. Database Syst., vol. 28, no. 4,

pp. 390–426, 2003. [Online]. Available: https://doi.org/10.1145/958942.958945

[4]. S. Kalra, A. Mallik, A. M. Alazab, and J. K. Chhabra, “ProxyFL: Decentralized federated learning through proxy models,”

Nat. Commun., vol. 14, no. 3259, 2023. [Online]. Available: https://doi.org/10.1038/s41467-023-38569-4

[5]. M. A. Kausar, V. S. Dhaka, and S. K. Singh, “Design of web crawler for the client-server technology,” Indian J. Sci. Technol.,

vol. 8, no. 36, pp. 1–7, Dec. 2015. [Online]. Available: https://indjst.org/Article.php?article=84536

[6]. Q. Wu et al., “HiFlash: Communication-efficient hierarchical federated learning with adaptive staleness control and

heterogeneity-aware client-edge association,” arXiv preprint arXiv:2301.06447, Jan. 2023. [Online]. Available:

https://arxiv.org/abs/2301.06447

[7]. C. Olston and N. Najork, “Web crawling,” Found. Trends Inf. Retrieval, vol. 4, no. 3, pp. 175–246, 2010. [Online]. Available:

https://doi.org/10.1561/1500000017

[8]. N. N. Albogami, “Intelligent deep federated learning model for enhancing security in IoT-enabled edge computing

environment,” Sci. Rep., vol. 15, article 4041, Feb. 2025. [Online]. Available: https://doi.org/10.1038/s41598-025-88163-5

[9]. J. Cho, H. Garcia-Molina, and L. Page, “Efficient crawling through URL ordering,” in Proc. Int. WWW Conf., 1998, pp. 161–

172. [Online]. Available: https://doi.org/10.1145/276627.276639

[10]. M. A. Kausar, M. Nasar, and S. K. Singh, “Information retrieval using soft computing: An overview,” Int. J. Sci. Eng. Res.,

vol. 4, no. 4, pp. 388–392, Apr. 2013. [Online]. Available: https://www.ijser.org/researchpaper/Information-Retrieval-using-

Soft-Computing.pdf

[11]. S. Yu, Z. Liu, and C. Xiong, “Craw4LLM: Efficient web crawling for LLM pretraining,” arXiv preprint arXiv:2502.13347,

Feb. 2025. [Online]. Available: https://arxiv.org/abs/2502.13347

[12]. K. Bonawitz et al., “Towards federated learning at scale: System design,” in Proc. MLSys, 2019. [Online]. Available:

https://proceedings.mlsys.org/paper/2019/hash/61c6f0f5da6e3f5dc3b2f0e9af2d3.html

[13]. T. Stephan et al., “Federated learning-driven IoT system for automated freshness monitoring,” J. Big Data, vol. 12, article

33, 2025. [Online]. Available: https://journalofbigdata.springeropen.com/articles/10.1186/s40537-025-01063-3

[14]. B. E. Brewington and G. Cybenko, “How dynamic is the web?,” Comput. Networks, vol. 33, pp. 257–276, 2000. [Online].

Available: https://doi.org/10.1016/S1389-1286(00)00044-7

[15]. M. S. Khan, M. A. Kausar, and S. S. Nawaz, “Big data analytics techniques to obtain valuable knowledge,” Indian J. Sci.

Technol., vol. 11, no. 14, Apr. 2018. [Online]. Available: https://indjst.org/Article.php?article=11714

[16]. L. Almeida, “Federated learning for a dynamic edge: A modular and resilient approach,” Sensors, vol. 25, no. 12, article

3812, Jun. 2025. [Online]. Available: https://www.mdpi.com/1424-8220/25/12/3812

[17]. C. Olston and S. Pandey, “Recrawl scheduling based on information longevity,” in Proc. WWW Conf., 2008, pp. 437–446.

[Online]. Available: https://doi.org/10.1145/1367497.1367569

[18]. M. A. Kausar and M. Nasar, “An effective technique for detection and prevention of SQLIA by utilizing CHECKSUM-based

string matching,” Int. J. Sci. Eng. Res., vol. 9, no. 1, pp. 1177–1182, Jan. 2018. [Online]. Available:

https://www.ijser.org/researchpaper/An-Effective-Technique-for-Detection-and-Prevention-of-SQLIA.pdf

[19]. Y. Zhang et al., “Privacy-preserving and fairness-aware federated learning for web applications,” in Proc. ACM CCS, 2024,

pp. 1781–1794. [Online]. Available: https://doi.org/10.1145/3589334.3645545

[20]. V. Shkapenyuk and T. Suel, “Design and implementation of a high-performance distributed web crawler,” in Proc. IEEE

ICDE, 2002, pp. 357–368. [Online]. Available: https://doi.org/10.1109/ICDE.2002.994754

https://arxiv.org/abs/2506.16146
https://ieeexplore.ieee.org/document/6575921
https://doi.org/10.1038/s41467-023-38569-4
https://indjst.org/Article.php?article=84536
https://arxiv.org/abs/2301.06447
https://doi.org/10.1561/1500000017
https://doi.org/10.1038/s41598-025-88163-5
https://doi.org/10.1145/276627.276639
https://www.ijser.org/researchpaper/Information-Retrieval-using-Soft-Computing.pdf
https://www.ijser.org/researchpaper/Information-Retrieval-using-Soft-Computing.pdf
https://arxiv.org/abs/2502.13347
https://proceedings.mlsys.org/paper/2019/hash/61c6f0f5da6e3f5dc3b2f0e9af2d3.html
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-025-01063-3
https://doi.org/10.1016/S1389-1286(00)00044-7
https://indjst.org/Article.php?article=11714
https://www.mdpi.com/1424-8220/25/12/3812
https://doi.org/10.1145/1367497.1367569
https://www.ijser.org/researchpaper/An-Effective-Technique-for-Detection-and-Prevention-of-SQLIA.pdf
https://doi.org/10.1109/ICDE.2002.994754

International Journal of Engineering and Information Systems (IJEAIS)

ISSN: 2643-640X

Vol. 9 Issue 9 September - 2025, Pages: 150-160

www.ijeais.org/ijeais

160

[21]. H.-T. Lee, D. Leonard, X. Wang, and D. Loguinov, “IRLbot: Scaling to 6 billion pages and beyond,” in Proc. Int. WWW

Conf., 2008, pp. 427–436. [Online]. Available: https://doi.org/10.1145/1367497.1367567

[22]. A. Kolobov, D. Savenkov, S. Mukherjee, A. Chidlovskii, and E. Horvitz, “Optimal freshness crawl under politeness

constraints,” in Proc. ACM SIGIR Conf., 2019, pp. 135–144. [Online]. Available: https://doi.org/10.1145/3331184.3331234

[23]. N. Upadhyay, S. K. Jain, and T. Nagarajan, “Learning to crawl: An adaptive crawler based on reinforcement learning,” in

Proc. AAAI Conf. Artif. Intell., 2020, pp. 736–743. [Online]. Available:

https://ojs.aaai.org/index.php/AAAI/article/view/7017

[24]. K. Avrachenkov, B. Gonçalves, A. Mishenin, and P. Nain, “Deep reinforcement learning-based web page crawling,” in Proc.

IEEE ICC Workshops, 2021, pp. 1–6. [Online]. Available: https://doi.org/10.1109/ICCWorkshops50388.2021.9473605

[25]. L. Jiang, Z. Wu, Q. Feng, J. Liu, and Q. Zheng, “Efficient deep web crawling using reinforcement learning,” in Proc. PAKDD,

LNCS 6118, 2010, pp. 369–380. [Online]. Available: https://doi.org/10.1007/978-3-642-13672-6_7

[26]. B. Yurdem, “Federated learning: Overview, strategies, applications,” J. Big Data, vol. 11, no. 22, 2024. [Online]. Available:

https://doi.org/10.1186/s40537-024-01122-y

[27]. T. H. Rafi, “Fairness and privacy preserving in federated learning,” Information Fusion, vol. 104, pp. 102–118, 2024.

[Online]. Available: https://doi.org/10.1016/j.inffus.2023.12.006

[28]. J. Cho and H. Garcia-Molina, “The evolution of the web and implications for an incremental crawler,” in Proc. VLDB, 2000,

pp. 200–209. [Online]. Available: http://www.vldb.org/conf/2000/P200.pdf

[29]. H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-efficient learning of deep networks

from decentralized data,” in Proc. AISTATS, 2017, pp. 1273–1282. [Online]. Available:

http://proceedings.mlr.press/v54/mcmahan17a.html

[30]. P. Kairouz et al., “Advances and open problems in federated learning,” Found. Trends Mach. Learn., vol. 14, nos. 1–2, pp.

1–210, 2021. [Online]. Available: https://doi.org/10.1561/2200000083

[31]. K. Bonawitz et al., “Practical secure aggregation for privacy-preserving machine learning,” in Proc. ACM CCS, 2017, pp.

1175–1191. [Online]. Available: https://doi.org/10.1145/3133956.3133982

[32]. A. Hard et al., “Federated learning for mobile keyboard prediction,” arXiv preprint arXiv:1811.03604, 2018. [Online].

Available: https://arxiv.org/abs/1811.03604

[33]. T. Yang et al., “Applied federated learning: Improving Google Keyboard query suggestions,” arXiv preprint

arXiv:1812.02903, 2018. [Online]. Available: https://arxiv.org/abs/1812.02903

[34]. U. Chajewska, “Federated learning with neural graphical models,” arXiv preprint arXiv:2309.11680, Sep. 2023. [Online].

Available: https://arxiv.org/abs/2309.11680

[35]. J. Bhanbhro et al., “Issues in federated learning: Some experiments and observations,” Sci. Rep., vol. 14, article 81732, 2024.

[Online]. Available: https://doi.org/10.1038/s41598-024-81732-0

[36]. K. Avrachenkov, J. Svyatskyi, and P. Nain, “Online algorithms for estimating change rates in crawling systems,” arXiv

preprint arXiv:2012.02791, 2020. [Online]. Available: https://arxiv.org/abs/2012.02791

[37]. A. Kolobov et al., “Staying up to date with online content changes using reinforcement learning for scheduling,” in Proc.

NeurIPS, 2019, pp. 9296–9306. [Online]. Available:

https://proceedings.neurips.cc/paper/2019/hash/d8d67d6cc8ab0e7c6e20a80bb4f54e67-Abstract.html

[38]. S. Chakrabarti, M. van den Berg, and B. Dom, “Focused crawling: A new approach to topic-specific web resource discovery,”

Comput. Networks, vol. 31, nos. 11–16, pp. 1623–1640, 1999. [Online]. Available: https://doi.org/10.1016/S1389-

1286(99)00052-3

[39]. N. Saeed, “Comprehensive review of federated learning challenges,” J. Big Data, vol. 12, article 115, 2025. [Online].

Available: https://journalofbigdata.springeropen.com/articles/10.1186/s40537-025-01195-6

[40]. J. L. Wolf, M. S. Squillante, P. S. Yu, J. Sethuraman, and L. Ozsen, “Optimal crawling strategies for web search engines,” in

Proc. WWW Conf., 2002, pp. 136–145. [Online]. Available: https://doi.org/10.1145/511446.511466

[41]. Y. Lefortier, V. Mavromatis, M. Simons, and N. Craswell, “Timely crawling of high-quality ephemeral new content,” arXiv

preprint arXiv:1310.2021, 2013. [Online]. Available: https://arxiv.org/abs/1310.2021

[42]. S. Han et al., “Predictive crawling for commercial web content,” in Proc. WWW Conf., 2019, pp. 2075–2085. [Online].

Available: https://doi.org/10.1145/3308558.3313408

https://doi.org/10.1145/1367497.1367567
https://doi.org/10.1145/3331184.3331234
https://ojs.aaai.org/index.php/AAAI/article/view/7017
https://doi.org/10.1109/ICCWorkshops50388.2021.9473605
https://doi.org/10.1007/978-3-642-13672-6_7
https://doi.org/10.1186/s40537-024-01122-y
https://doi.org/10.1016/j.inffus.2023.12.006
http://www.vldb.org/conf/2000/P200.pdf
http://proceedings.mlr.press/v54/mcmahan17a.html
https://doi.org/10.1561/2200000083
https://doi.org/10.1145/3133956.3133982
https://arxiv.org/abs/1811.03604
https://arxiv.org/abs/1812.02903
https://arxiv.org/abs/2309.11680
https://doi.org/10.1038/s41598-024-81732-0
https://arxiv.org/abs/2012.02791
https://proceedings.neurips.cc/paper/2019/hash/d8d67d6cc8ab0e7c6e20a80bb4f54e67-Abstract.html
https://doi.org/10.1016/S1389-1286(99)00052-3
https://doi.org/10.1016/S1389-1286(99)00052-3
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-025-01195-6
https://doi.org/10.1145/511446.511466
https://arxiv.org/abs/1310.2021
https://doi.org/10.1145/3308558.3313408

