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Abstract: This paper examines the development of an innovative Artificial Intelligence (AI) and Internet of Things (IoT) solution for 

monitoring real-time river pollution. As the world's water bodies become more polluted, the gravity of the situation deepens. The 

framework employs IoT devices that track specific water quality parameters (pH, temperature, turbidity, dissolved oxygen, total 

dissolved solids, and more) and relays the data to a processing unit. Within the processing unit, AI prediction models are formed 

that perform anomaly detection, pollution prediction, and classification for alerts. After training on historical data, the machine 

learning model can predict pollution instances much more rapidly than the thresholds. Preliminary findings suggest that the model's 

predictive capabilities surpass a 90% accuracy level and can thus be utilized to visualize reports. The data can be transformed into 

actionable insight for the web and mobile dashboards. In addition, the model can also be deployed to set off alarms for the concerned 

authorities. The adaptable model can also be applied to several other sites, including but not limited to, industrial zones and 

residential sites adjoining the river, thus aiding in the development of IoT driven environmental monitoring and achieving 

sustainable development goals for the emerging economies like Vietnam. 

Keywords: Water pollution monitoring, Artificial Intelligence (AI), Internet of Things (IoT), Early pollution prediction, Machine 

learning, Sustainable development, Water resources. 

1. Introduction 

Water contamination is one of the most pressing issues in the environment on a global scale and is more severe in developing 

countries. Rivers and lakes, the arteries of the ecosystem and important daily life and productive water sources, are increasingly 

polluted by toxic elements. It not only poses a serious threat to public health but also leads to unpredictable consequences for 

biodiversity and the natural equilibrium of aquatic ecosystems. Under this background, the rapid development of water pollution 

monitoring and early warning systems is a very important thing to do. To address this requirement, the study provides an innovative 

solution that forecasts the quality of river water in real time by fusing Artificial Intelligence (AI) and Internet of Things (IoT) 

technologies. The system is configured to automatically secure and collect water environment data at all. 

2. Theoretical overview 

This research delves into the intersection of environmental science and artificial intelligence as well as geo-spatial analysis in 

the construction of a real-time predictive model for water pollution. The foundation of the model involves parameters such as pH 

level, temperature, turbidity, the amount of dissolved oxygen, total dissolved solids, heavy metals, and coliforms. AI serves as the 

model's anomaly detection mechanism. L ATA based, supervised, unsupervised and time series models are trained with historical 

and live sensors data. The use of GIS based geo-spatial analysis compliments the model through mapping of the sources of 

contamination, pathways of spread and the target areas.  

The architecture of the system is a combination of real time data insights in addition to the data pertaining to sensors and the 

historical data which is generated through python-based data processing and geo processing tools on data of the interactive interface. 

The system also delivers mobile and web dashboards along with spatial risk maps. The real-time dashboard presents alerts along 

with visual instructions. Some of the major elements are uninterrupted sensor analysis, automatic SMS and email notifications, real-

time time-series data, automatable predictive reporting, geospatial risk mapping, device reliability monitoring, iterative model 

retraining and smoothed time series visualization.  

Relevant factors of the system being the environmental managers, scientists, local authorities and citizens are presented with 

timely information and thus as a base, the system provides improved decision-making as well as risk acknowledgement in spatial 

and geo areas repeatedly over time. Fulfilling the target goals of the users, the system supports water quality management in a 

practical and scalable framework. 

3. Methodology   

3.1. System Architecture   
This study creates a custom architecture combining Artificial Intelligence (AI) with the Internet of Things (IoT) for the purpose 

of predicting and monitoring pollution in freshwater in real time.  The architecture works in five sequential steps; data capturing and 
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harmonization; multi-source fusion; training of predictive models, and the generation of alerts.  Sensor nodes with IoT capability are 

used on streams, reservoirs, and urban drainage systems to collect data on pH, turbidity, heavy metals, dissolved oxygen, total 

dissolved solids, and microbials.  The data are sent and collected on a cloud-based ledger using wireless (LoRa, NB-IoT) and cellular 

(LTE) networks while automated processes eliminate noisy data, anomalies, unit discrepancies, and temporal misalignment.  Multi-

source fusion augments the streams with meteorological data and models, land cover information, elevation data, and historical water 

quality records.  Engineering creates novel features of pollutants, sharp shifts in parameters, and bounds surpassing.  Ensembles of 

supervised learning (Random Forest, Gradient Boosted Trees, LSTM networks) are used to train these features.  Robust 

generalization across seasons and hydrological patterns is ensured via cross validation.  The models output real time inferences which 

are displayed on risk heat maps, sent as geo-targeted notifications to mobile devices and on the web. 

With the integration of Artificial Intelligence (AI) prediction algorithms paired with geospatially relevant Internet of Things 

(IoT) monitoring, the system predictive analyzes and spatially correlates data streams to monitor IoT geolocated signals in real time. 

This system also alerts first responders and the public as well as geo-specialized authorities. This ensures they are best prepared to 

handle interruptions of time-sensitive streams or resources. Thus, a greater stewardship paradigm for water resources is correctly 

applied. This stewardship is enhanced by the real-time public and geo-centered first responders' notifications. These notifications 

enable greater public awareness and active real-time interventions. 

3.2. Data Pre-processing and Processing 

Random Forest is an algorithm which deals with both classification and regression problems. Random Forest is a descendant of 

decision tree classifiers. Random Forest still relies on the old decision tree structures but constructs a multitude of pipes as a final 

model. Each of the pipes are classified as a single decision tree (aka weaker model) which are then connected into the final structure. 

Each tree structure relies on a sample of the original data set which is the base of a ‘bootstrap sample’ and relies on a ‘subset of 

features’ based on a random selection. Even if the model randomly sheds information, the classification is still correct. Each tree is 

aligned into a single classification with the highest count and classified as correct, or an average is taken. This model is very accurate 

even with lost data. It is very complex and resilient even with random data, scales very well, and can pinpoint important factors, like 

critical ways through which pollution is introduced to the monitored water. It is still algebraically complex and has low feasibility 

scores for edge partitions of data from systems in real time. Every model is evaluated based on the standard analytics, the precision 

and recall the model gets out of itself, and the ease of which it can construct the confusion matrix. To avoid overfitting and ensure 

robustness, k-fold cross validation are unbiased estimates of model performance across hydrological and seasonal conditions. Such 

attributes make Random Forest both powerful and practical, especially when it comes to real-time water quality forecasting in a fluid 

and uncertain environment.

4. Research processing 

4.1. Description of data used for research 

Table 1. Sample of the water quality dataset with measured parameters and potability classification. 

 
The dataset includes parameters important for the assessment of water quality. The Timestamp parameter captures date and time 

for measuring real time and time series data. The pH range (6.52–6.83) is within the World Health Organization (WHO) safe limits 

(6.5–8.5). Hardness, as defined, ranges from the geological sources of dissolved calcium and magnesium salts, while Solids represent 
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inorganic salts and minerals, which WHO recommends < 500 mg/L (max 1000 mg/L). The maximum safe concentration of 

chloramine, a disinfectant, is 4 mg/L. The range of concentration of sulfate in natural waters varies from freshwater (3–30 mg/L) to 

seawater (~2700 mg/L). Conductivity, which measures the ability of water to pass electric current, also determines the concentration 

of ions in the water. Organic Carbon (OC) is defined as the quantity of carbon contained in the organic compound. The suggested 

concentration of OC in treated water by the US EPA is < 2 mg/L. Disinfection by product thrihalomethanes should also be below 80 

ppm. The average turbidity of the samples in this study is 0.98 NTU. This is well below the WHO limit of 5.0 NTU. Finally, potability 

is a binary variable which represents the ability of water to be consumed without any health risk (1) or having health risks (0). 

4.2. Tools and Technologies Used 

A set of commonly known software programs and libraries was used to make the real-time water pollution monitoring system 

prototype more efficient and better positioned for scaling for mass usage. Python was geoTeaching in the primary integrated rapid 

and user interface wiysubsmoud ero NumPy and Pands used for data processing supporting model training and user interface 

components, geospatial frameworks and then powerful libraries worked for fast processing. Matplotlib integrated with array systems 

to plot structured and process datasets data and offered flexible processing with efficient data systems streams through Pandas. In 

Scikit learned data manipulation and evaluation frameworks McCullough zoom and Random with Random Forest precise controls 

of elements performance matrices training assessed feature scaling matrix of features with primary accuracy precision medical 

confusion evaluation assessed feature scaling primary evaluation metrics accuracy precision and medical confusion matrices.  In the 

end, Streamlit was used to deploy real-time monitoring and data visualization systems which provided an interactive web interface 

for stakeholders easy primary access. 

4.3. Research Procedure 

First, we will list the necessary libraries that will be used in this project: 

Listing 1. Python code snippet showing library imports for data preprocessing and model building. 

 
Secondly, we load and display the dataset using pandas. The dataset consists of 3000 rows and 11 columns. Then we display the 

basic information and statistics of the data. 

Table 2. Sample records from the water quality dataset. 
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Listing 2. Output of the dataset 

information using the panda's info() 

function. 

Listing 3. Descriptive statistics of the dataset generated by the pandas 

describe() function. 

Now, we will check if the dataset has null values. We will visualize it as the graph below. As in the chart, except for the 

"timestamp" and "Potability" values, the data columns are missing. This we need to handle before feeding into the training model. 

 
Figure 1. Sum of missing values in each feature 

 
Figure 2. Distribution of potable and non-potable water samples represented by a bar chart (left) and a pie chart (right). 

The distribution of the Potability feature is represented in a bar chart as well as in a pie chart– the bar graph on the left side of 

the image and the pie graph on the right side. According to the bar chart, from a total of 3000 water samples, it can be concluded 

that roughly 62% (approximately 1850 samples) have been classified as Not Potable (0) and 38% (approximately 1150 samples) 

have been classified as Potable (1). This sample classification imbalance is grossly visible in the pie chart, where the potable water 

is represented in blue and the non-potable water is represented inred. 
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Figure 3. Distribution of water quality parameters in the dataset (July-August 2024) 

Water quality parameters for each period are shown with each of the 10 histograms, each combined with a KDE curve – together, 

they depict the monitoring of water quality parameters during a specified interval as shown below. 

 During the period of July and August 2024, the data set was reasonably compressed with a fidelity that reflects the data 

collection technique’s effectiveness in tracking the phenomenon in real time. 

 The data sets near natural distribution with a focus on average 7.1 ‘speak’s’ to the WHO’s guidelines and standards on water 

quality parameters 6.5 and 8.5. 

 The distribution characteristics of both hardness and sulfate show apparent and recognizable value errors or outlier values. 

 The crucial focus on THMs as disinfection byproducts resonate with the shaped and statistically controlled distribution 

peaking near 60 µg/L. 

It is noted there is a presence of moderately heavy-tailed distributions; the features which fundamentally emphasize adherence 

to a statistical model should ideally better handled or tended to. 
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Figure 4. Distribution of water quality parameters by potability classification (July-August 2024) 

The above figure shows KDE plots for each water quality parameter comparing the potable and non-potable water samples 

distributions. These plots also show how feature distributions change for the target class Potability. 

  pH: Both classes have similar bell-shaped distributions. Potable water was skewed to the right, which shows that safer 

water tends to be verging more to the alkaline side. 

 Hardness & Solids: The nearly identical distribution for both classes implies that these features may be insufficient for 

separation. 

 Chloramines: There are minor differences because potable samples are more concentrated with chloramines which are 

consistent with treated water. 

 Sulfate: There is absence of a class distinction which suggests a low correlation with potability. 

 Conductivity: The potable class is more spread with a slight right-shift which implies that there is a slight elevation of safer 

water. 

 Organic Carbon: Potable water is higher due to the greater concentration of organic carbon which shows that this feature is 

suggestive for prediction. 

 Trihalomethanes: The slight decreases of Trihalomethanes for Potable water is more common, indicating moderate associate 

with potability.These density plots suggest that some features (e.g., Organic Carbon, Chloramines, Conductivity) may 

contribute meaningfully to the prediction of water potability, while others (e.g., Sulfate, Hardness) may be redundant or 

require feature engineering to extract more value.  

 
Figure 5. Pearson correlation heatmap of water quality parameters and potability (July–August 2024). 

The heatmap displays the Pearson correlation coefficients among all numerical features, including the target variable Potability. 

The next step in this research is to process the data and build a model. We will check the data columns and fill the missing values 

with the mean using the function dataframe[column].fillna(dataframe[column].mean(), inplace = True). The result after processing 

is as shown below. 

Table 3. Sample records from the water quality dataset showing measured parameters and potability classification. 

 
Then we split the dataset and normalize it. We will split the data into two parts: X and y.  X is the feature matrix or independent 

variable, and y is the target vector or dependent variable.   

 
Listing 4. Python code for splitting the dataset into training and testing sets. 
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In this case, our target variable is Potability, which is a categorical variable indicating the level of water. We will use pandas. 

Drop() function to perform this operation. 

 
Listing 5. Python code for normalizing features using StandardScaler. 

Nomalization was applied using StandardScaler to normalize input features. The training set was fitted and transformed, while 

the test set was transformed using the same parameters. This ensures consistent scaling and prevents data leakage. 

 

Listing 6. Training and evaluation of random forest classifier for water potability prediction 

As established previously: RandomForestClassifier(n_estimators=100, random_state=42)  

 First, it constructs a Random Forest Classifier with a hundred trees (n_estimators=100). 

 The random seed (random_state=42) guarantees reproducibility. 

model.fit(X_train, y_train)  

 Uses the training dataset (X_train, y_train) to train the model. 

 The model can discern features which it will then predict. 

The model can predict with an accuracy of 91.33% which is impressive, particularly for class 1 where the model achieves a 

recall of 90.2%. There are problems however, false positives (57) and false negatives (25) which can be quite significant depending 

on the problem at hand. 

 

Figure 6. Confusion matrix for water potability classification 

As the final step of our research, we will build an interactive user interface using Streamlit. 
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Figure 7. Manual input interface for water quality prediction system 

The results are returned when water quality is clean. 

 

Figure 8. User Interface of the Water Quality Prediction System 

The result is returned when the water sample is polluted. 

The water quality prediction system is a system that analyzes and predicts water quality based on sensor input parameters. The 

system works as given below. 

First, users are input the option to use either a CSV file containing sensor data or system parameters, (this will be available soon) 

which will allow users to interface and input the data directly as parameters. Users will be asked a series of questions about where 

each parameter is adjusted through corresponding control slides. 

The moment the user completes the data input, the system is supposed to analyze and use a machine learning model to predict 

water quality. The interface shows the prediction result, “water is CLEAN!!!” is shown if the water is determined to be clean 

otherwise, there are other warning messages which the system displays. The system serves as a powerful extra tool which helps users 

to determine if the water has any form of pollution which has potential harmful consequences. 

5. Conclusion 

This study integrates robotics and electronics along with spatiotemporal data and remote sensing for the design and deployment 

of an automated system for monitoring the environment and controlling water quality in real time. The system’s monitoring 

architecture allows detection and real-time monitoring of water quality indicators, triggering alerts and communication of risks at 

defined thresholds, and employs IoT sensors and Machine Learning. The system records a 91.33% accuracy rate, which is lower 

than the Random Forest (100%) of Alomani et al. (2022) and MLR (99.83%) of Kularbphettong et al. (2025), and XGBoost (97.06%) 

of Elvin Wibowo (2024) but is commendable considering the constraints and complexities of real-time data streams. Contrary to 

most of the existing literature which uses structured data, this system is predicated on the versatile and real-time data. Predictive 

models employing Random-Forest for groundwater (R² = 0.82; Apogba, 2024) and hybrid ARIMA-SSA-LSTM models (R² = 0.998; 

Wang, 2024) demonstrate excellent long-term forecasts but are prohibitively expensive to compute, thus real-time use is limited. Our 

Random-Voice System, on the other hand, is optimized for use with Artificial Intelligence and Internet-of-Things frameworks and 

distributed computing, providing lower cost solutions with minimized compromise on accuracy and real-time performance. 
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6. Scalability and future directions 

The suggested water pollution monitoring system utilizes modular and adaptable architecture designed for effective large-scale 

use. Its backend coded in Python and its powerful servers process high volumes of data to add thousands of sensors without any 

slowdowns. The data platform supports external APIs and databases which enhance input data and improves predictive performance, 

such as hydrometeorological records and data on industrial discharges. Future development of the system will focus on high-accuracy 

predictive forecasting using deep learning techniques, particularly recurrent and convolutional neural networks, for more effective 

time-series and long-range forecasting. Using multi-layered geospatial data, pollution source and cause pattern analysis could be 

further improved using AI-based analysis. Research on IoT sensor energy optimization may also increase device lifespan, supporting 

the large-scale monitoring system’s sustainability.  

7. Appendices 

Structure of project 

 

Figure 9. Project directory structure for water quality prediction system 

This project has been designed with modularity and scalability in mind and encompasses the entire data science life cycle, which 

spans data preprocessing, visualization, model building, and deploying the interface. Below, there is a folder and file structure 

breakdown: 

.venv/ — Virtual Environment: To avoid any dependency conflicts with other projects on the same machine, it contains a python 

environment tailored to the specifications of this project and ensures that specific package versions do not clash.  

data/ — Dataset Storage: Houses both the raw and processed datasets. 

• raw/ 

Contains the original dataset (water_quality_dataset.csv) that has been acquired from external sources. It is the untouched data 

that is used for exploration and cleansing. 

• processed/ 

Contains datasets that have been cleansed and preprocessed which are ready for input during the analysis and the model building 

phases. 

notebooks/ — Data Science Workflow Notebooks: A compilation of Jupyter Notebooks created for conducting exploratory 

analyses, data cleansing, and model building.  

src/ — The system’s backbone which contains the main structure of the code, model interfaces with the user, and the user system 

incorporated in the system’s core logic.  

• models/: Comprises the python files with the necessary definitions, training and savers of the machine learning models. 

ui/: Houses the components for the user interface that are designed to actively fetch results from users and input data from their 

ends. 
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